- ID:
- ivo://CDS.VizieR/J/AJ/157/171
- Title:
- Visual analysis and demographics of Kepler TTVs
- Short Name:
- J/AJ/157/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We visually analyzed the transit timing variation (TTV) data of 5930 Kepler Objects of Interest (KOIs) homogeneously. Using data from Rowe et al. (2014, J/ApJ/784/45) and Holczer et al. (2015, J/ApJ/807/170; 2016, J/ApJS/225/9), we investigated TTVs for nearly all KOIs in Kepler's Data Release 24 catalog. Using TTV plots, periodograms, and phase-folded quadratic plus sinusoid fits, we visually rated each KOI's TTV data in five categories. Our ratings emphasize the hundreds of planets with TTVs that are weaker than the ~200 that have been studied in detail. Our findings are consistent with statistical methods for identifying strong TTVs, though we found some additional systems worth investigation. Between about 3-50 days and 1.3-6 Earth radii, the frequency of strong TTVs increases with period and radius. As expected, strong TTVs are very common when period ratios are near a resonance, but there is not a one-to-one correspondence. The observed planet-by-planet frequency of strong TTVs is only somewhat lower in systems with one or two known planets (7%+/-1%) than in systems with three or more known planets (11%+/-2%). We attribute TTVs to known planets in multitransiting systems but find ~30 cases where the perturbing planet is unknown. Our conclusions are valuable as an ensemble for learning about planetary system architectures and individually as stepping stones toward more-detailed mass-radius constraints. We also discuss Data Release 25 TTVs, investigate ~100 KOIs with transit duration and/or depth variations, and estimate that the Transiting Exoplanet Survey Satellite will likely find only ~10 planets with strong TTVs.
« Previous |
251 - 255 of 255
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/153/115
- Title:
- VLT/SINFONI observations of MIPSGAL "bubbles"
- Short Name:
- J/AJ/153/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8"-by-8" regions of 55 MIPSGAL "bubbles" (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells' morphologies in the mid-IR and central sources spectral types.
- ID:
- ivo://CDS.VizieR/J/ApJS/255/6
- Title:
- Warm Jupiters in TESS FFIs 1st year (2018-2019 July)
- Short Name:
- J/ApJS/255/6
- Date:
- 06 Dec 2021 19:57:22
- Publisher:
- CDS
- Description:
- Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
- ID:
- ivo://CDS.VizieR/J/AJ/160/230
- Title:
- WASP-31b and host star radius compared with IMACS
- Short Name:
- J/AJ/160/230
- Date:
- 10 Dec 2021
- Publisher:
- CDS
- Description:
- We present a new optical (400-950nm) transmission spectrum of the hot Jupiter WASP-31b (M=0.48M_Jup_; R=1.54R_Jup_; P=3.41days), obtained by combining four transit observations. These transits were observed with IMACS on the Magellan Baade Telescope at Las Campanas Observatory as part of the ACCESS project. We investigate the presence of clouds/hazes in the upper atmosphere of this planet, as well as the contribution of stellar activity on the observed features. In addition, we search for absorption features of the alkali elements NaI and KI, with particular focus on KI, for which there have been two previously published disagreeing results. Observations with Hubble Space Telescope (HST)/STIS detected KI, whereas ground-based low- and high- resolution observations did not. We use equilibrium and nonequilibrium chemistry retrievals to explore the planetary and stellar parameter space of the system with our optical data combined with existing near-IR observations. Our best-fit model is that with a scattering slope consistent with a Rayleigh slope ({alpha}=5.3_-3.1_^+2.9^), high-altitude clouds at a log cloud top pressure of -3.6_-2.1_^+2.7^bars, and possible muted H2O features. We find that our observations support other ground-based claims of no KI. Clouds are likely why signals like H2O are extremely muted and Na or K cannot be detected. We then juxtapose our Magellan/IMACS transmission spectrum with existing VLT/FORS2, HST/WFC3, HST/STIS, and Spitzer observations to further constrain the optical-to-infrared atmospheric features of the planet. We find that a steeper scattering slope ({alpha}=8.3{+/-}1.5) is anchored by STIS wavelengths blueward of 400nm and only the original STIS observations show significant potassium signal.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/26
- Title:
- YSO candidates in Canis Major OB1 association
- Short Name:
- J/ApJS/240/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a very young star-forming region in the outer Galaxy that is the most concentrated source of outflows in the Spitzer Space Telescope GLIMPSE360 survey. This region, dubbed CMa-l224, is located in the Canis Major OB1 association. CMa-l224 is relatively faint in the mid-infrared, but it shines brightly at the far-infrared wavelengths as revealed by the Herschel Space Observatory data from the Hi-GAL survey. Using the 3.6 and 4.5{mu}m data from the Spitzer/GLIMPSE360 survey, combined with the JHKs Two Micron All Sky Survey (2MASS) and the 70-500{mu}m Herschel/Hi-GAL data, we develop young stellar object (YSO) selection criteria based on color-color cuts and fitting of the YSO candidates' spectral energy distributions with YSO 2D radiative transfer models. We identify 293 YSO candidates and estimate physical parameters for 210 sources well fit with YSO models. We select an additional 47 sources with GLIMPSE360-only photometry as "possible YSO candidates." The vast majority of these sources are associated with high H2 column density regions and are good targets for follow-up studies. The distribution of YSO candidates at different evolutionary stages with respect to Herschel filaments supports the idea that stars are formed in the filaments and become more dispersed with time. Both the supernova-induced and spontaneous star formation scenarios are plausible in the environmental context of CMa-l224. However, our results indicate that a spontaneous gravitational collapse of filaments is a more likely scenario. The methods developed for CMa-l224 can be used for larger regions in the Galactic plane where the same set of photometry is available.