- ID:
- ivo://CDS.VizieR/J/ApJ/855/63
- Title:
- Yields of Fe and Zn for different types of SNe
- Short Name:
- J/ApJ/855/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The heaviest iron-peak element Zinc (Zn) has been used as an important tracer of cosmic chemical evolution. Spectroscopic observations of the metal-poor stars in Local Group galaxies show an increasing trend of [Zn/Fe] ratios toward lower metallicity. However, the enrichment of Zn in galaxies is not well understood due to poor knowledge of astrophysical sites of Zn, as well as metal mixing in galaxies. Here we show possible explanations for the observed trend by taking into account electron-capture supernovae (ECSNe) as one of the sources of Zn in our chemodynamical simulations of dwarf galaxies. We find that the ejecta from ECSNe contribute to stars with [Zn/Fe]>~0.5. We also find that scatters of [Zn/Fe] in higher metallicities originate from the ejecta of type Ia supernovae. On the other hand, it appears difficult to explain the observed trends if we do not consider ECSNe as a source of Zn. These results come from an inhomogeneous spatial metallicity distribution due to the inefficiency of the metal mixing. We find that the optimal value of the scaling factor for the metal diffusion coefficient is ~0.01 in the shear- based metal mixing model in smoothed particle hydrodynamics simulations. These results suggest that ECSNe could be one of the contributors of the enrichment of Zn in galaxies.
« Previous |
451 - 455 of 455
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/1345
- Title:
- YJK for Type Ia supernovae
- Short Name:
- J/MNRAS/448/1345
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ~15 to 30d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.
- ID:
- ivo://CDS.VizieR/J/A+A/656/A94
- Title:
- Z-dependent yields of double detonations
- Short Name:
- J/A+A/656/A94
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Double detonations in sub-Chandrasekhar mass carbon-oxygen white dwarfs with helium shell are a potential explosion mechanism for a Type Ia supernova. It comprises a shell detonation and subsequent core detonation. The focus of our study is on the effect of the progenitor metallicity on the nucleosynthetic yields. For this, we compute and analyse a set of eleven different models with varying core and shell masses at four different metallicities each. This results in a total of 44 models at metallicities between 0.01Z_{sun}_ and 3Z_{sun}_. Our models show a strong impact of the metallicity in the high density regime. The presence of ^22^$Ne causes a neutron-excess which shifts the production from ^56^Ni to stable isotopes such as ^54^Fe and ^58^Ni in the {alpha}-rich freeze-out regime. The isotopes of the metallicity implementation further serve as seed nuclei for additional reactions in the shell detonation. Most significantly, the production of ^55^Mn increases with metallicity confirming the results of previous work. A comparison of elemental ratios relative to iron shows a relatively good match to solar values for some models. Super-solar values are reached for Mn at 3Z_{sun}_ and solar values in some models at Z_{sun}_. This indicates that the required contribution of Type Ia supernovae originating from Chandrasekhar mass WDs can be lower than estimated in previous work to reach solar values of [Mn/Fe] at [Fe/H]=0. Our galactic chemical evolution models suggest that Type Ia supernovae from sub-Chandrasekhar mass white dwarfs, along with core-collapse supernovae, could account for more than 80% of the solar Mn abundance. Using metallicity-dependent Type Ia supernova yields helps to reproduce the upward trend of [Mn/Fe] as a function of metallicity for the solar neighborhood. These chemical evolution predictions, however, depend on the massive star yields adopted in the calculations.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/152
- Title:
- ZTF early observations of Type Ia SNe. I. LCs
- Short Name:
- J/ApJ/886/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z=0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN2018crl), one Ia-CSM SN ZTF18aaykjei (SN2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN2018eul), ZTF18abdpvnd (SN2018dvf), ZTF18aawpcel (SN2018cir), and ZTF18abddmrf (SN2018dsx).
- ID:
- ivo://CDS.VizieR/J/ApJ/895/32
- Title:
- Zwicky Transient Facility BTS. I.
- Short Name:
- J/ApJ/895/32
- Date:
- 16 Mar 2022 00:25:08
- Publisher:
- CDS
- Description:
- The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible northern sky (~3{pi}) with newly found transient candidates announced via public alerts. The ZTF Bright Transient Survey (BTS) is a large spectroscopic campaign to complement the photometric survey. BTS endeavors to spectroscopically classify all extragalactic transients with m_peak_<~18.5mag in either the g_ZTF_ or r_ZTF_ filters, and publicly announce said classifications. BTS discoveries are predominantly supernovae (SNe), making this the largest flux-limited SN survey to date. Here we present a catalog of 761 SNe, classified during the first nine months of ZTF (2018 April 1-2018 December 31). We report BTS SN redshifts from SN template matching and spectroscopic host-galaxy redshifts when available. We analyze the redshift completeness of local galaxy catalogs, the redshift completeness fraction (RCF; the ratio of SN host galaxies with known spectroscopic redshift prior to SN discovery to the total number of SN hosts). Of the 512 host galaxies with SNe Ia, 227 had previously known spectroscopic redshifts, yielding an RCF estimate of 44%{+/-}4%. The RCF decreases with increasing distance and decreasing galaxy luminosity (for z<0.05, or ~200Mpc, RCF~0.6). Prospects for dramatically increasing the RCF are limited to new multifiber spectroscopic instruments or wide-field narrowband surveys. Existing galaxy redshift catalogs are only ~50% complete at r~16.9mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events or sources of ultra-high-energy cosmic rays or neutrinos.