- ID:
- ivo://CDS.VizieR/VII/108C
- Title:
- Asteroids II Machine-Readable Data Base
- Short Name:
- VII/108C
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This data set was assembled by E. F. Tedesco, Jet Propulsion Laboratory, in March 1988 from files provided by the contributors to the above reference. Included are asteroid names and discovery circumstances, proper elements and family identifications, asteroid lightcurve parameters, asteroid pole determinations, taxonomic classes, absolute magnitudes and slope parameters, UBV color indices, and albedos and diameters from the IRAS Asteroid and Comet Survey. The asteroid discovery tables were updated by F. Pilcher in 1994.
Number of results to display per page
Search Results
1302. Asteroids in GALEX
- ID:
- ivo://CDS.VizieR/J/ApJ/809/92
- Title:
- Asteroids in GALEX
- Short Name:
- J/ApJ/809/92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ultraviolet (UV) photometry (near-UV (NUV) band, 180-280nm) of 405 asteroids observed serendipitously by GALEX from 2003 to 2012. All asteroids in this sample were detected by GALEX at least twice. Unambiguous visible-color-based taxonomic labels (C type versus S type) exist for 315 of these asteroids; of these, thermal-infrared-based diameters are available for 245. We derive NUV-V color using two independent models to predict the visual magnitude V at each NUV-detection epoch. Both V models produce NUV-V distributions in which the S types are redder than C types with more than 8{sigma} confidence. This confirms that the S types' redder spectral slopes in the visible remain redder than the C types' into the NUV, this redness being consistent with absorption by silica-containing rocks. The GALEX asteroid data confirm earlier results from the International Ultraviolet Explorer, which two decades ago produced the only other sizeable set of UV asteroid photometry. The GALEX-derived NUV-V data also agree with previously published Hubble Space Telescope (HST) UV observations of asteroids 21 Lutetia and 1 Ceres. Both the HST and GALEX data indicate that NUV band is less useful than u band for distinguishing subgroups within the greater population of visible-color-defined C types (notably, M types and G types).
- ID:
- ivo://CDS.VizieR/J/A+A/556/A8
- Title:
- 100 asteroids rotational parameters
- Short Name:
- J/A+A/556/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We compute for a set of 100 asteroids their rotational parameters: the moments of inertia along the principal axes of the object, the obliquity of the axis of rotation with respect to the orbital plane, the precession rates, and the nutation coefficients. We select 100 asteroids for which the parameters for the study are well-known from observations or space missions. For each asteroid, we determine the moments of inertia, assuming an ellipsoidal shape. We calculate their obliquity from their orbit (instead of the ecliptic) and the orientation of the spin-pole. Finally, we calculate the precession rates and the largest nutation components. The number of asteroids concerned leads to some statistical studies of the output. We provide a table of rotational parameters for our set of asteroids. The table includes the obliquity, their axes ratio, their dynamical ellipticity H_d_, and the scaling factor K. We compute the precession rate {psi} and the leading nutation coefficients {Delta}{psi} and {Delta}{epsilon}. We observe similar characteristics, as observed by previous authors that is, a significantly larger number of asteroids rotates in the prograde mode (~60%) than in the retrograde one with a bimodal distribution. In particular, there is a deficiency of objects with a polar axis close to the orbit. The precession rates have a mean absolute value of 18"/y, and the leading nutation coefficients have an average absolute amplitude of 5.7" for {Delta}{psi} and 5.2" for {Delta}{epsilon}. At last, we identify and characterize some cases with large precession rates, as seen in 25143 Itokawa, with has a precession rate of about - 475"/y.
- ID:
- ivo://CDS.VizieR/J/A+A/506/79
- Title:
- Asteroseismic analysis of HD 174936
- Short Name:
- J/A+A/506/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the {delta}-Scuti star HD 174936 (ID 7613) observed by CoRoT during the first short run SRc01 (27 days). A total number of 422 frequencies were extracted from the light curve using standard prewhitening techniques. This number of frequencies was obtained by considering a spectral significance limit of sig=10 using the software package SigSpec. Our analysis of the oscillation frequency spectrum reveals a spacing periodicity around 52muHz. Although modes considered here are not in the asymptotic regime, a comparison with stellar models confirms that this signature may stem from a quasi-periodic pattern similar to the so-called large separation in solar-like stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/838/115
- Title:
- Asteroseismic analysis of 8 Kepler red giants
- Short Name:
- J/ApJ/838/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using data from the NASA spacecraft Kepler, we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest {Delta}{nu} values display rich sets of mixed l=1 modes, while this is not the case for the four stars with higher {Delta}{nu}. For the four stars with lowest {Delta}{nu}, we determine the asymptotic period spacing of the mixed modes, {Delta}P, which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ~2M_{sun}_ stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/152
- Title:
- Asteroseismic analysis of 22 solar-type stars
- Short Name:
- J/ApJ/749/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to ~1% precision, and ages to ~2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/L41
- Title:
- Asteroseismic classification of KIC objects
- Short Name:
- J/ApJ/765/L41
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Of the more than 150000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the red giant branch, the low-mass (M/M_{sun}_<~1.8) helium-core-burning red clump, and the higher-mass (M/M_{sun}_>~1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.
- ID:
- ivo://CDS.VizieR/J/AJ/158/227
- Title:
- Asteroseismic parameters of RGB stars
- Short Name:
- J/AJ/158/227
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Every Sun-like star will eventually evolve into a red giant, a transition which can profoundly affect the evolution of a surrounding planetary system. The timescale of dynamical planet evolution and orbital decay has important implications for planetary habitability, as well as post-main-sequence star and planet interaction, evolution, and internal structure. Here, we investigate these effects by estimating planet occurrence around 2476 low-luminosity red giant branch (LLRGB) stars observed by the NASA K2 mission. We measure stellar masses and radii using asteroseismology, with median random uncertainties of 3.7% in mass and 2.2% in radius. We compare this planet population to the known population of planets around dwarf Sun-like stars, accounting for detection efficiency differences between the stellar populations. We find that 0.49%+/-0.28% of LLRGB stars host planets larger than Jupiter with orbital periods less than 10 days, tentatively higher than main-sequence stars hosting similar planets (0.15%+/-0.06%). Our results suggest that the effects of stellar evolution on the occurrence of close-in planets larger than Jupiter are not significant until stars have begun ascending substantially up the red giant branch (>~5-6 R_{sun}_).
- ID:
- ivo://CDS.VizieR/J/ApJ/767/127
- Title:
- Asteroseismic solutions for 77 Kepler stars
- Short Name:
- J/ApJ/767/127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. (2013, J/ApJS/204/24) shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.
- ID:
- ivo://CDS.VizieR/J/ApJS/210/1
- Title:
- Asteroseismic study of solar-type stars
- Short Name:
- J/ApJS/210/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T_eff_, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T_eff_ and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogeneous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.