- ID:
- ivo://CDS.VizieR/J/AJ/150/187
- Title:
- Abundances and stellar parameters of LAMOST stars
- Short Name:
- J/AJ/150/187
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe an application of the SEGUE Stellar Parameter Pipeline (SSPP) to medium-resolution stellar spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), in order to determine estimates of the stellar atmospheric parameters (T_eff_, logg, and [Fe/H]) and the abundance ratios ([{alpha}/Fe] and [C/Fe]). By performing a coordinate match with the LAMOST stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the RAdial Velocity Experiment (RAVE), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). We ran the selected LAMOST stellar spectra from each survey through SSPP, and compared the stellar parameters down to signal-to-noise ratio (S/N) of 10 and chemical abundances down to S/N=20 derived by SSPP with those determined by the APOGEE, RAVE, and SEGUE software pipelines. Our results show that the derived stellar parameters generally agree quite well, even though there exist some small systematic offsets with small scatter in T_eff_, logg, and [Fe/H], due to the use of different temperature scales, abundance scales, and calibrations adopted by each survey. Comparison of the [{alpha}/Fe] determinations for LAMOST spectra suggests no sign of significant systematic offsets (< -0.04dex), with a small scatter (<0.08dex) relative to stars in common with APOGEE and SEGUE. The [C/Fe] estimates determined for the LAMOST spectra also exhibit good agreement, with a very small offset (~0.01dex) and scatter (~0.12dex) relative to the SEGUE stars, while there exists about a -0.19dex offset, with a small scatter of ~0.13dex, for the APOGEE sample. Due to the existence of small offsets in the stellar parameters and abundances among difference data sets, optimal results when combining the different data sets will be obtained by removing the offsets. Once accomplished, the stellar parameters and chemical abundances estimated by SSPP from the LAMOST stellar spectra should provide a reliable database for studies of the Galactic disk and halo systems.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+AS/113/299
- Title:
- Abundances and velocities for cluster giants
- Short Name:
- J/A+AS/113/299
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a large dataset consisting of giants in the field, and in open and globular clusters. A total of 122 giants were observed in the fields of 8 open clusters. A total of 342 giants were observed in the fields of 25 globular clusters. A total of 36 field stars with well known abundances and luminosities were also observed. Table 8 lists the spectral indices measured for the giants observed with the Argus and Red Channel spectrographs during 1991 and 1992. The central and continuum passbands for these indices are defined in Table 6.
- ID:
- ivo://CDS.VizieR/J/AJ/130/2140
- Title:
- Abundances and velocities in globular clusters
- Short Name:
- J/AJ/130/2140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have compiled a sample of globular clusters with high-quality stellar abundances from the literature to compare to the chemistries of stars in the Galaxy and in dwarf spheroidal galaxies. Of the 45 globular clusters examined, 29 also have kinematic information. Most of the globular clusters belong to the Galactic halo; however, a significant number have disk kinematics or belong to the bulge.
- ID:
- ivo://CDS.VizieR/J/ApJ/754/91
- Title:
- Abundances and velocities of NGC 6397 stars
- Short Name:
- J/ApJ/754/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i<10km/s), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ~70km/s. For HB stars with T<10500K there is a clear temperature-oxygen anticorrelation that can be understood if the star position along the HB is mainly determined by the He content. The hottest BSSs and HB stars (with temperatures T>8200K and T>10500K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H]=-2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.
- ID:
- ivo://CDS.VizieR/J/A+A/569/A55
- Title:
- Abundances and vsini for 348 red giants
- Short Name:
- J/A+A/569/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Li and alpha-elements abundances, as well as rotational velocities for 348 stars. Li has been detected in 92 stars, of which 82 are giants. Those data ware used to investigate various channels of Li enrichment in giants.
- ID:
- ivo://CDS.VizieR/J/ApJ/743/140
- Title:
- Abundances (Be,{alpha}) in metal-poor stars
- Short Name:
- J/ApJ/743/140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have made observations of Be in 117 metal-poor stars ranging in metallicity from [Fe/H]=-0.5 to -3.5 with Keck I/HIRES. Our spectra are high resolution (~42000) and high signal to noise (the median is 106 per pixel). We have determined the stellar parameters spectroscopically from lines of FeI, FeII, TiI, and TiII. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. We have kinematic information on 114 stars in our sample and they divide equally into dissipative and accretive stars.
- ID:
- ivo://CDS.VizieR/J/AJ/152/176
- Title:
- Abundances for all seven stars in Latham 1
- Short Name:
- J/AJ/152/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R~60000), high-signal-to-noise ratio (<S/N> ~100) spectra obtained with the Otto Struve 2.1m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55{<=}[Fe/H]{<=}0.06dex ({sigma}=0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.
- ID:
- ivo://CDS.VizieR/J/A+A/287/927
- Title:
- Abundances for lines of n-capture in 19 stars
- Short Name:
- J/A+A/287/927
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- (no description available)
- ID:
- ivo://CDS.VizieR/J/A+A/627/A173
- Title:
- Abundances for 4 metal-poor stars
- Short Name:
- J/A+A/627/A173
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Age estimates are very uncertain and are available for only a small number of metal-poor stars. Here we present the first results of a pilot program aimed at deriving precise masses, ages and chemical abundances for metal-poor halo giants using asteroseismology, and high-resolution spectroscopy. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improving spectroscopic temperatures, metallicities and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss, [alpha/Fe]-enhancement). Orbits were computed using Gaia DR2 data. {The stars are found to be "normal" metal-poor halo stars (i.e. non C-enhanced), with an abundance pattern typical of old stars (i.e. alpha and Eu-enhanced), and with masses in the 0.80-1.0M_{sun}_ range. The inferred model-dependent stellar ages are found to range from 7.4 to 13.0Gyr, with uncertainties of ~30%-35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from APOGEE survey and a set of M4 stars. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H]~-0.8 to -2dex), are very old >9Gyr (14 out of 19 stars), and all of them are older than >5Gyr (within the 68 percentile confidence level).
- ID:
- ivo://CDS.VizieR/J/ApJS/245/34
- Title:
- Abundances for 6 million stars from LAMOST DR5
- Short Name:
- J/ApJS/245/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ~8 million low-resolution (R~1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of -4dex<[Fe/H]<0.6dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/N_pixel_>=50, the typical internal abundance precision is 0.03-0.1dex for the majority of these elements, with 0.2-0.3dex for Cu and Ba, and the internal precision of Teff and logg is better than 30K and 0.07dex, respectively. Abundance systematics at the ~0.1dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5.