- ID:
- ivo://CDS.VizieR/J/A+A/647/A167
- Title:
- Using H-bump to identify RSGs in NGC6822
- Short Name:
- J/A+A/647/A167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a case study in which we used a novel method to identify red supergiant (RSG) candidates in NGC 6822 based on their 1.6um H-bump. We collected 32 bands of photometric data for NGC 6822 ranging from the optical to the mid-infrared (MIR), derived from Gaia, PS1, LGGS, VHS, UKIRT, IRSF, HAWK-I, Spitzer, and WISE. Using the theoretical spectra from MARCS, we demonstrate that there is a prominent difference around 1.6um (H-bump) between targets with high and low surface gravity (HSG and LSG). Taking advantage of this feature, we identify efficient color-color diagrams of rzH (r-z versus z-H) and rzK (r-z versus z-K) to separate HSG (mostly foreground dwarfs) and LSG targets (mainly background red giant stars, asymptotic giant branch stars, and RSGs) from crossmatching of optical and near-infrared (NIR) data. Moreover, synthetic photometry from ATLAS9 gives similar results. We further separated RSG candidates from the remaining LSG candidates as determined by the H-bump method by using semi-empirical criteria on NIR color-magnitude diagrams, where both the theoretic cuts and morphology of the RSG population are considered. This separation produced 323 RSG candidates. The simulation of foreground stars with Besancon models also indicates that our selection criteria are largely free from the contamination of Galactic giants. In addition to the H-bump method, we used the traditional BVR method (B-V versus V-R) as a comparison and/or supplement by applying a slightly aggressive cut to select as many RSG candidates as possible (358 targets). Furthermore, the Gaia astrometric solution was used to constrain the sample, where 181 and 193 targets were selected with the H-bump and BVR method, respectively. The percentages of selected targets in the two methods are similar at ~60%, indicating a comparable accuracy of the two methods. In total, there are 234 RSG candidates after combining targets from the two methods, and 140 (~60%) of them are in common. The final RSG candidates are in the expected locations on the mid-infrared color-magnitude diagram with [3.6]-[4.5]<~0 and J-[8.0]~1.0. The spatial distribution is also coincident with the far-ultraviolet-selected star formation regions, suggesting that the selection is reasonable and reliable. We indicate that our method can also be used to identify other LSG targets, such as red giants and asymptotic giant branch stars, and it can also be applied to most of the nearby galaxies by using recent large-scale ground-based surveys. Future ground- and space-based facilities may promote its application beyond the Local Group.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/I/163
- Title:
- US Naval Observatory Pleiades Catalog
- Short Name:
- I/163
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This catalog is a special subset of the Eichhorn et al. (1970) Pleiades catalog (see <I/90>) updated to B1950.0 positions and with proper motions added. It was prepared for the purpose of predicting occultations of Pleiades stars by the Moon, but is useful for general applications because it contains many faint stars not present in the current series of large astrometric catalogs.
- ID:
- ivo://CDS.VizieR/I/157
- Title:
- U.S. Naval Observatory Zodiacal Zone Catalog
- Short Name:
- I/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalog provides positions and proper motions at equinox and epoch J2000.0, on the FK5 system, for stars in the magnitude range 4-10, lying within 16 degrees of the ecliptic and north of declination -30 degrees. In order that references to earlier catalogs can be made, the B1950.0 positions and proper motions are given in both the FK5 and the FK4 systems. Other useful information, such as visual magnitudes and spectral types, is also provided. Stellar identification is strictly by Durchmusterung number, and the catalog is ordered by J2000.0 right ascension. It is important to understand that the present catalog does not cover the entire zodiacal zone, since stars south of zone -29 degrees could not be observed from the Washington site. These will be observed from the USNO Black Birch station in New Zealand commencing in 1991.
22094. USNO-B1 plates
- ID:
- ivo://org.gavo.dc/usnob/res/plates/pq
- Title:
- USNO-B1 plates
- Short Name:
- usnob_plates
- Date:
- 27 Dec 2024 08:31:13
- Publisher:
- The GAVO DC team
- Description:
- This table contains the metadata for the plates that went into USNO-B 1.0 as best as we can reconstruct it (i.e., largely those that also make up the Digital Sky Survey DSS). Most of the source files were obtained from http://www.nofs.navy.mil/data/fchpix/, some additional contributions came from Dave Monet.
22095. USNO Martian observations
- ID:
- ivo://CDS.VizieR/J/A+A/582/A36
- Title:
- USNO Martian observations
- Short Name:
- J/A+A/582/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Accurate positional measurements of planets and satellites are used to improve their orbits, our knowledge of their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Mars, Phobos, and Deimos taken with the U.S. Naval Observatory 61-inch astrometric reflector and 26-inch refractor from 1967 to 1997. 425 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process which includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
- ID:
- ivo://CDS.VizieR/J/AJ/103/638
- Title:
- USNO Photographic Parallaxes. I.
- Short Name:
- J/AJ/103/638
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The U.S. Naval Observatory CCD trigonometric parallax program is described in detail, including the instrumentation employed, observing procedures followed, and reduction procedures applied. Astrometric results are presented for 72 stars ranging in apparent brightness from V=15.16 to 19.58. Photometry (V and V-I on the Kron-Cousins system) is presented for the parallax stars and for all 426 individual reference stars employed in the astrometric solutions. Corrections for differential color refraction, calibrated to the observed V-I colors, have been applied to all astrometric measures. The mean errors in the relative parallaxes range from +/-0.0005" to +/-0.0027" with a median value of +/-0.0010". Seventeen of the 23 stars with V_tan_>200km/s form a well-delineated sequence of extreme subdwarfs covering 11.5<M_V_<14.5 in the M_V_ vs V-I diagram. The transformation to the M_bol_ vs log T_eff_ plane is presented and the results are compared with various model interior computations. Within the limitations due to the uncertain T_eff_ scale for cool dwarfs and subdwarfs, the coolest members of the extreme subdwarf sequence appear to be near the hydrogen-burning minimum mass limit for stars with metallicities of [M/H]~-2.
- ID:
- ivo://CDS.VizieR/J/AJ/105/1571
- Title:
- USNO Photographic Parallaxes IX
- Short Name:
- J/AJ/105/1571
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Trigonometric parallaxes, relative proper motions, and photometry are presented for 122 stars in 111 systems. Of these stars, 70 are brighter than V = 10.0.
- ID:
- ivo://CDS.VizieR/J/A+A/596/A37
- Title:
- USNO Saturnian observations 1974-1998
- Short Name:
- J/A+A/596/A37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Accurate positional measurements of planets and satellites are used to improve our knowledge of both their orbits and their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its major satellites taken with the U.S. Naval Observatory 26-inch refractor from 1974 to 1998. 526 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
22099. UT1 definitions in IAU 2000
- ID:
- ivo://CDS.VizieR/J/A+A/406/1135
- Title:
- UT1 definitions in IAU 2000
- Short Name:
- J/A+A/406/1135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper provides expressions to be used to implement the new definition of UT1 corresponding to the IAU 2000 resolutions either in the new (CEO-based) or classical (equinox-based) transformations between the International Terrestrial Reference System (ITRS) and the Geocentric Celestial Reference System (GCRS). The new expression for Greenwich Sidereal Time (GST) has to be in agreement at the micro-arcsecond level, for one century, with the IAU 2000 expressions for the Earth Rotation Angle (ERA) and for the quantity s positioning the Celestial Ephemeris Origin (CEO) on the equator of the CIP. The computations of the new expressions using the IAU 2000 precession-nutation model are performed in such a manner as to ensure that there is no discontinuity in UT1 on 1 January 2003 and that there is equivalence of the classical and new transformations between the ITRS and GCRS relative to the rotation about the axis of the CIP when these expressions are used. The equinox offset that is considered in the computations refers to the dynamical mean equinox of J2000.0. The resulting expressions have been included in the IERS Conventions 2000.
- ID:
- ivo://CDS.VizieR/J/MNRAS/484/3691
- Title:
- UTMOST pulsar timing programme. I.
- Short Name:
- J/MNRAS/484/3691
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars), we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allow us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463km/s fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by lognormal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.