High resolution Fabry-Perot data of six spiral galaxies are presented. Those data extend the previous sample of spiral galaxies studied with high resolution 3-D spectroscopy to earlier morphological types. All the galaxies in the sample have available HI data at 21cm from the VLA or Westerbork. Velocity fields are analyzed and H{alpha} rotation curves are computed and compared to HI curves. The kinematics of NGC 5055 central regions are looked at more closely. Its peculiar kinematics can be interpreted either as a bipolar outflow or as a counter-rotating disk, possibly hosting a 9+/-2x10^8^M_{sun}-compact object. Most of the H{alpha} rotation curves present a significantly steeper inner slope than their HI counterparts. The 21cm data thus seems affected by moderate to strong beam smearing. The beam smearing has an effect at higher scale-length/beam-width than previously thought (up to 20km/s at a ratio of 8.5).
We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67pc (10', or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a magnitude limit of r=21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far out as 87pc. After correcting for the influence of binary stars using repeated velocity measurements, we determine a velocity dispersion of 3.7^+1.4^_-1.1_km/s. The mass within the half-light radius is 5.8^+8.2^_-3.1_x10^5^M_{sun}_. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band mass-to-light ratio of 3400M_{sun}_/L_{sun}_, Segue 1 is the darkest galaxy currently known.
The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of 850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msini between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available.
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961.
We study the distribution of gas pressure and entropy in eight groups of galaxies belonging to the ROSAT All-Sky Survey/Center for Astrophysics Loose Systems (RASSCALS, Cat. <J/ApJ/534/114>). We use archival and proprietary XMM-Newton observations, supplementing the X-ray data with redshifts derived from the literature; we also list 125 new redshifts measured with the Gemini North telescope.
The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very LargeTelescope. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Students t-distributions than by normal distributions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26km/s, dependent on instrumental configuration.
We present a stellar dynamical estimate of the black hole (BH) mass in the Seyfert 1 galaxy, NGC 4151. We analyze ground-based spectroscopy as well as imaging data from the ground and space, and we construct three-integral axisymmetric models in order to constrain the BH mass and mass-to-light ratio.
A compilation of proper motions, radial velocities, and apparent magnitudes of B and A stars is combined with the absolute magnitudes and colour excesses from the "Catalogue of estimated astrophysical parameters" by Philip and Egret (at. V/14).
The KONUS instruments were flown on pairs of Venera spacecraft. Veneras 11/12 were launched in September 1978; bursts were recorded through January 1980. Veneras 13/14 were launched in November 1981 and were operational through approximately March 1983. The Veneras were interplanetary spacecraft, which flew to Venus, and thus each spacecraft had whole sky coverage for most of its mission. This is a service provided by NASA HEASARC .