In 1997 February, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Program (VSOP) mission. Approximately 25% of the mission time was dedicated to the VSOP survey of bright compact active galactic nuclei (AGNs) at 5GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in the third paper in the series, which contained 102 sources. For most sources, the plots of the (u,v) coverage, the visibility amplitude versus (u,v) distance, and the high-resolution image are presented. Model fit parameters to the major radio components are determined, and the brightness temperature of the core component for each source is calculated. The brightness temperature distributions for all of the sources in the VSOP AGN survey are discussed.
We have imaged with milliarcsecond resolution at 5 GHz 374 strong flat-spectrum radio sources north of declination -44{deg} using the VLBA in 1996 June. The source sample was compiled from the source list for the VLBI Space Observatory Programme (VSOP) Survey Program. About 250 of the sources observed with the VLBA had correlated flux densities >=0.3 Jy on the longest VLBA baseline and these sources are currently being observed with VSOP at 5 GHz. This paper presents the results from the VLBA prelaunch observations: the correlated flux density dependence with u-v distance; the contour display of the images; the model fit parameters for each radio component; and improved positions for 62 sources. Comparisons and extensive cross-referencing with other major VLBI surveys are also given.
The Sloan Digital Sky Survey (SDSS) has created a knowledge gap between the Northern and the Southern hemispheres, which is very marked for white dwarfs: Only ~15 per cent of the known white dwarfs are south of the equator. Here, we make use of the VLT Survey Telescope (VST) ATLAS survey, one of the first surveys obtaining deep, optical, multiband photometry over a large area of the southern skies, to remedy this situation. Applying the colour and proper-motion selection developed in our previous work on SDSS to the most recent internal data release (2016 April 25) of VST ATLAS, we created a catalogue of ~4200 moderately bright (g<=19), high-confidence southern white dwarf candidates, which can be followed up individually with both the large array of southern telescopes or in bulk with ESO's forthcoming multi-object spectrograph 4MOST.
We present new photometric and spectroscopic observations and analyses for the eclipsing binary systems V1241 Tau and GQ Dra. Our photometric light and radial velocity curves analyses combining with the TESS light curves show that both are conventional semi--detached binary systems. Their absolute parameters are also derived. We present the O-C analyses of the systems and we propose the most possible orbital period modulating mechanisms. Furthermore, Fourier analyses are applied to the photometric residual data of the systems to check for the pulsational behavior of the components. We conclude that the primary component of the system GQ Dra is a delta Sct type pulsator with a dominant pulsation frequency of 18.58d^-1^ based on our B filter residual light curve although it can not be justified by 30-minute cadence TESS data. No satisfactory evidence of pulsational behaviour for V1241 Tau was verified. Finally, the evolutionary tracks of the components of both systems are calculated, while their locations within evolutionary diagrams are compared with other Algol-type systems.
Double-lined, detached eclipsing binaries are our main source for accurate stellar masses and radii. This paper is the first in a series with focus on the upper half of the main-sequence band and tests of 1-2M_{sun}_ evolutionary models. We aim to determine absolute dimensions and abundances for the detached eclipsing binary V1130 Tau, and to perform a detailed comparison with results from recent stellar evolutionary models.
V1184 Tau (CB 34V) lies in the field of the Bok globule CB 34 and was discovered as a large amplitude variable in 1993. According to the first hypothesis of the variability of the star, it is a FU Orionis candidate erupted between 1951 and 1993. During subsequent observations, the star manifests large amplitude variability interpreted as obscuration from circumstellar clouds of dust. We included V1184 Tau (CB 34V) in our target list of highly variable pre-main-sequence stars to determine the reasons for the variations in the brightness of this object. Data from BVRI photometric observations of V1184 Tau were performed in two observatories with two medium-sized and two small telescopes. Our results indicate that during periods of maximum light the star shows characteristics typical of T Tauri stars. During the observed deep minimum in brightness, however, V1184 Tau is rather similar to UX Orionis objects. The deep drop in brightness magnitude diagrams is also confirmation of obscuration from circumstellar clouds of dust as a reason for the large amplitude variability in the brightness.
V471 Tauri, a white dwarf-red dwarf eclipsing binary (EB) in the Hyades, is well known for stimulating development of common envelope theory, whereby novae and other cataclysmic variables form from much wider binaries by catastrophic orbit shrinkage. Our evaluation of a recent imaging search that reported negative results for a much postulated third body shows that the object could have escaped detection or may have actually been seen. The balance of evidence continues to favor a brown dwarf companion about 12 AU from the EB. A recently developed algorithm finds unified solutions from three data types. New radial velocities (RVs) of the red dwarf and BVRcIc light curves are solved simultaneously along with white dwarf and red dwarf RVs from the literature, uvby data, the Microvariability and Oscillations of Stars mission light curve, and 40 years of eclipse timings. Precision-based weighting is the key to proper information balance among the various data sets. Timewise variation of modeled starspots allows unified solution of multiple data eras. Light-curve amplitudes strongly suggest decreasing spottedness from 1976 to about 1980, followed by approximately constant spot coverage from 1981 to 2005. An explanation is proposed for lack of noticeable variation in 1981 light curves, in terms of competition between spot and tidal variations. Photometric-spectroscopic distance is estimated. The red dwarf mass comes out larger than normal for a K2 V star, and even larger than adopted in several structure and evolution papers. An identified cause for this result is that much improved red dwarf RV curves now exist.
Detecting and characterising exoworlds around very young stars (age<=10Myr) are key aspects of exoplanet demographic studies, especially for understanding the mechanisms and timescales of planet formation and migration. Any reliable theory for such physical phenomena requires a robust observational database to be tested. However, detection using the radial velocity method alone can be very challenging because the amplitude of the signals caused by the magnetic activity of such stars can be orders of magnitude larger than those induced even by massive planets. We observed the very young (~2Myr) and very active star V830 Tau with the HARPS-N spectrograph between October 2017 and March 2020 to independently confirm and characterise the previously reported hot Jupiter V830 Tau b (K_b_=68+/-11ms; m_b_sini_b_=0.57+/-0.10M_jup_; P_b_=4.927+/-0.008d). Because of the observed ~1km/s radial velocity scatter that can clearly be attributed to the magnetic activity of V830 Tau, we analysed radial velocities extracted with different pipelines and modelled them using several state-of-the-art tools. We devised injection-recovery simulations to support our results and characterise our detection limits. The analysis of the radial velocities was aided by a characterisation of the stellar activity using simultaneous photometric and spectroscopic diagnostics. Despite the high quality of our HARPS-N data and the diversity of tests we performed, we were unable to detect the planet V830 Tau b in our data and cannot confirm its existence. Our simulations show that a statistically significant detection of the claimed planetary Doppler signal is very challenging. It is important to continue Doppler searches for planets around young stars, but utmost care must be taken in the attempt to overcome the technical difficulties to be faced in order to achieve their detection and characterisation. This point must be kept in mind when assessing their occurrence rate, formation mechanisms, and migration pathways, especially without evidence of their existence from photometric transits.
We aim to determine the distribution of basaltic asteroids (classified as V-types) based on the spectrophotometric data reported in the MOVIS-C catalogue. A total of 782 asteroids were identified. The observations with all four filters (Y, J, H, Ks), available for 297 of these candidates, allow a reliable comparison with the laboratory data of howardite, eucrite, and diogenite meteorites. We found that the majority of the basaltic candidates (~95 per cent) are located in the inner main belt, while only 29 (~4 per cent) and 8 (~1 per cent) are located in the middle (MMB) and outer main belt (OMB), respectively. A fraction of ~33 per cent from the V-type candidates is associated with the Vesta family (with respect to AstDyS). We also identified four MMB V-type candidates belonging to (15) Eunomia family, and another four low inclination ones corresponding to (135) Hertha. We report differences between the colour indices and albedo distributions of the V-type candidates located in the inner main belt compared to those from the MMB and OMB. These results support the hypothesis of a different origin for the basaltic asteroids with a semimajor axis beyond 2.5au. Furthermore, lithological differences are present between the vestoids and the inner low inclination basaltic asteroids. The data allow us to estimate the unbiased distribution of basaltic asteroids across the main asteroid belt. We highlight that at least 80 per cent of the ejected basaltic material from (4) Vesta is missing or is not yet detected because it is fragmented in sizes smaller than 1km.