The VSOP mission is a Japanese-led project to image radio sources with sub-milliarcsec resolution by correlating the signal from the orbiting 8-m telescope, HALCA, with a global array of telescopes. Twenty- five percent of the scientific time of this mission is devoted to a survey of 402 bright, small-diameter extra-galactic radio sources at 5-GHz. The major goals of the VSOP Survey are statistical in nature: to determine the brightness temperature and approximate structure; to provide a source list for use with future space VLBI missions; and to compare radio properties with other data throughout the EM spectrum. This paper describes: the compilation of a complete list of radio sources associated with active galactic nuclei (AGN); the selection of the subsample of sources to be observed with VSOP; the extensive ground resources used for the Survey; the status of the observations as of 2000 July; the data-analysis methods; and several examples of results from the VSOP Survey. More detailed results from the full sample will be given in future papers.
The VLBI Space Observatory Programme (VSOP) mission is a Japanese-led project to study radio sources with sub-milliarcsec resolution using an orbiting 8m telescope, HALCA, along with global arrays of Earth-based telescopes. Approximately 25% of the observing time is devoted to a survey of compact active galactic nuclei (AGNs) that are stronger than 1Jy at 5GHz - the VSOP AGN Survey. This paper, the third in the series, presents the results from the analysis of the first 102 Survey sources.
The VLBI Space Observatory Programme (VSOP) mission is a Japanese-led project to study radio sources with submilliarcsecond angular resolution, using an orbiting 8m telescope on board the satellite HALCA with a global Earth-based array of telescopes. A major program is the 5GHz VSOP Survey Program, which we supplement here with Very Long Baseline Array observations to produce a complete and flux density-limited sample. Using statistical methods of analysis of the observed visibility amplitude versus projected (u, v) spacing, we have determined the angular size and brightness temperature distribution of bright radio emission from active galactic nuclei.
In 1997 February, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Program (VSOP) mission. Approximately 25% of the mission time was dedicated to the VSOP survey of bright compact active galactic nuclei (AGNs) at 5GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in the third paper in the series, which contained 102 sources. For most sources, the plots of the (u,v) coverage, the visibility amplitude versus (u,v) distance, and the high-resolution image are presented. Model fit parameters to the major radio components are determined, and the brightness temperature of the core component for each source is calculated. The brightness temperature distributions for all of the sources in the VSOP AGN survey are discussed.
We have imaged with milliarcsecond resolution at 5 GHz 374 strong flat-spectrum radio sources north of declination -44{deg} using the VLBA in 1996 June. The source sample was compiled from the source list for the VLBI Space Observatory Programme (VSOP) Survey Program. About 250 of the sources observed with the VLBA had correlated flux densities >=0.3 Jy on the longest VLBA baseline and these sources are currently being observed with VSOP at 5 GHz. This paper presents the results from the VLBA prelaunch observations: the correlated flux density dependence with u-v distance; the contour display of the images; the model fit parameters for each radio component; and improved positions for 62 sources. Comparisons and extensive cross-referencing with other major VLBI surveys are also given.
The Sloan Digital Sky Survey (SDSS) has created a knowledge gap between the Northern and the Southern hemispheres, which is very marked for white dwarfs: Only ~15 per cent of the known white dwarfs are south of the equator. Here, we make use of the VLT Survey Telescope (VST) ATLAS survey, one of the first surveys obtaining deep, optical, multiband photometry over a large area of the southern skies, to remedy this situation. Applying the colour and proper-motion selection developed in our previous work on SDSS to the most recent internal data release (2016 April 25) of VST ATLAS, we created a catalogue of ~4200 moderately bright (g<=19), high-confidence southern white dwarf candidates, which can be followed up individually with both the large array of southern telescopes or in bulk with ESO's forthcoming multi-object spectrograph 4MOST.
We present new photometric and spectroscopic observations and analyses for the eclipsing binary systems V1241 Tau and GQ Dra. Our photometric light and radial velocity curves analyses combining with the TESS light curves show that both are conventional semi--detached binary systems. Their absolute parameters are also derived. We present the O-C analyses of the systems and we propose the most possible orbital period modulating mechanisms. Furthermore, Fourier analyses are applied to the photometric residual data of the systems to check for the pulsational behavior of the components. We conclude that the primary component of the system GQ Dra is a delta Sct type pulsator with a dominant pulsation frequency of 18.58d^-1^ based on our B filter residual light curve although it can not be justified by 30-minute cadence TESS data. No satisfactory evidence of pulsational behaviour for V1241 Tau was verified. Finally, the evolutionary tracks of the components of both systems are calculated, while their locations within evolutionary diagrams are compared with other Algol-type systems.
Double-lined, detached eclipsing binaries are our main source for accurate stellar masses and radii. This paper is the first in a series with focus on the upper half of the main-sequence band and tests of 1-2M_{sun}_ evolutionary models. We aim to determine absolute dimensions and abundances for the detached eclipsing binary V1130 Tau, and to perform a detailed comparison with results from recent stellar evolutionary models.
V1184 Tau (CB 34V) lies in the field of the Bok globule CB 34 and was discovered as a large amplitude variable in 1993. According to the first hypothesis of the variability of the star, it is a FU Orionis candidate erupted between 1951 and 1993. During subsequent observations, the star manifests large amplitude variability interpreted as obscuration from circumstellar clouds of dust. We included V1184 Tau (CB 34V) in our target list of highly variable pre-main-sequence stars to determine the reasons for the variations in the brightness of this object. Data from BVRI photometric observations of V1184 Tau were performed in two observatories with two medium-sized and two small telescopes. Our results indicate that during periods of maximum light the star shows characteristics typical of T Tauri stars. During the observed deep minimum in brightness, however, V1184 Tau is rather similar to UX Orionis objects. The deep drop in brightness magnitude diagrams is also confirmation of obscuration from circumstellar clouds of dust as a reason for the large amplitude variability in the brightness.