- ID:
- ivo://CDS.VizieR/J/A+A/559/A132
- Title:
- AKARI NEP Deep Survey revised catalog
- Short Name:
- J/A+A/559/A132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the revised catalogue of the AKARI North Ecliptic Pole Deep survey. The survey was carried out with the InfraRed Camera (IRC) onboard AKARI which has a comprehensive mid-IR wavelength coverage in nine photometric bands at 2-24 micron. For mid-IR source extraction we used a detection image while for near-IR source detection we used optical to near-IR ground-based catalogue which is based on CFHT/MegaCam z', CFHT/WIRCam Ks and Subaru/Scam z' band detection. Here we present an AKARI source with the identification from the ground-based catalogue. For objects with multiple counterparts, all of these were listed in the catalogue with an upper limit for the AKARI flux. The magnitudes are given in the AB system.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/214/20
- Title:
- AKARI NEP field J- and H- band source catalog
- Short Name:
- J/ApJS/214/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the J- and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J- and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer on the Kitt Peak National Observatory 2.1m telescope covering a 5.1deg^2^ area down to a 5{sigma} depth of ~21.6mag and ~21.3mag (AB) for the J and H bands with an astrometric accuracy of 0.14" and 0.17" for 1{sigma} in R.A. and decl. directions, respectively. We detected 208020 sources for the J band and 203832 sources for the H band. This NIR data is being used for studies including the analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable data set for various future missions.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/846
- Title:
- AKARI NEP Survey sources at 18um
- Short Name:
- J/MNRAS/444/846
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first galaxy counts at 18{mu}m using the Japanese AKARI satellite's survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8deg^2^, respectively. We describe a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 per cent completeness) of 0.15 and 0.3mJy for the NEP-Deep and NEP-Wide surveys, respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24{mu}m. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150{mu}Jy level we calculate that AKARI has resolved approximately 55 per cent of the 18{mu}m cosmic infrared background relative to the predictions of contemporary source count models.
- ID:
- ivo://nasa.heasarc/wsrt20anep
- Title:
- AKARI NEP WSRT 20-cm Source Catalog
- Short Name:
- WSRT20ANEP
- Date:
- 14 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Westerbork Radio Synthesis Telescope (WSRT) has been used in 2004 to make a deep radio survey of an ~1.7 degree<sup>2</sup> field coinciding with the AKARI north ecliptic pole (NEP) deep field. The WSRT survey consisted of 10 pointings, mosaiced with enough overlap to maintain a similar sensitivity across the central region that reached as low as 21 microJanskies/beam (µJy/beam) at 1.4 GHz. The observations, data reduction and source count analysis are presented in the reference paper, along with a description of the overall scientific objectives. A catalog containing 462 sources detected with a resolution of 17.0 arcsecs by 15.5 arcsecs is presented. The differential source counts calculated from the WSRT data have been compared with those from the shallow VLA-NEP survey of Kollgaard et al. (1994, ApJS, 93, 145), and show a pronounced excess for sources fainter than ~1 mJy, consistent with the presence of a population of star-forming galaxies at sub-mJy flux levels. The AKARI NEP deep field is the focus of a major observing campaign conducted across the entire spectral region. The combination of these data sets, along with the deep nature of the radio observations will allow unique studies of a large range of topics including the redshift evolution of the luminosity function of radio sources, the clustering environment of radio galaxies, the nature of obscured radio-loud active galactic nuclei, and the radio/far-infrared correlation for distant galaxies. This catalog provides the basic data set for a future series of paper dealing with source identifications, morphologies, and the associated properties of the identified radio sources. This table was created by the HEASARC in March 2011 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/517/A54">CDS catalog J/A+A/517/A54</a> file table2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://CDS.VizieR/J/ApJ/784/53
- Title:
- AKARI NIR spectral atlas of Galactic HII regions
- Short Name:
- J/ApJ/784/53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a large collection of near-infrared spectra (2.5-5.4 {mu}m) of Galactic HII regions and HII region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 {mu}m features, most spectra show a relatively weak emission feature at 5.22 {mu}m with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 {mu}m band (previously reported).
- ID:
- ivo://nasa.heasarc/aknepdfcxo
- Title:
- Akari North Ecliptic Pole Deep Field Chandra X-Ray Point Source Catalog
- Short Name:
- AKNEPDFCXO
- Date:
- 14 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains results from the 300-ks Chandra survey in the AKARI North Ecliptic Pole (NEP) deep field. This field has a unique set of 9-band infrared photometry covering 2-24 micron from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ~15 micron, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z ~1. The authors have designed a source detection procedure, which performs joint Maximum Likelihood PSF fits on all of their 15 mosaicked Chandra pointings covering an area of 0.34 square degrees. The procedure has been highly optimized and tested by simulations. A point source catalog with photometry and Bayesian-based 90%-confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands has been produced. The catalog contains 457 X-ray sources and the spurious fraction is estimated to be ~1.7%. Sensitivity and 90%-confidence upper flux limits maps in all bands are provided as well. In their study, the authors searched for optical MIR counterparts in the central 0.25 square degrees, where deep Subaru Suprime-Cam multi-band images exist. Among the 377 X-ray sources detected therein, ~80% have optical counterparts and ~60% also have AKARI mid-IR counterparts. The authors cross-matched their X-ray sources with MIR-selected AGN from Hanami et al. (2012, PASJ, 64, 70). Around 30% of all AGN that have MID-IR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates. The source catalog contained in this table uses an internal threshold of ML = 9.5 which corresponds to ML<sub>empir</sub> ~12 (see Sect. 4.3.3 of the reference paper for more details). In total, 457 sources are detected, of which 377 objects fall in the deep Subaru imaging region (shown in Figure 1 of the reference paper). This catalog is designed to identify X-ray emitting objects in the Chandra/AKARI NEP deep field. Together with the optimized cross-identification procedure, the clear advantage of the catalog is the very high reliability, while the catalog sacrifices completeness for objects with low counts (see Figure 9 in the paper). Only ~1.7% of the objects listed in the source catalog are expected to be spurious source detections. The two sources that have an ML-threshold in the 0.5-7 keV band below 9.5 originate from a 0.5-7 keV single-band source detection run. To quote similar ML values for all objects, the authors list the total 0.5-7 keV ML values from the joint 3-energy band source detection run. The listed counts, count rates, fluxes, and the corresponding uncertainties in the 0.5-7 keV band are taken from the single-band detection run. Considering the uncertainty in the astrometric calibration, all sources should be considered as possible X-ray counterparts that are within a radius of r<sub>match</sub> = sqrt(sigma<sub>total</sub><sup>2</sup>+sigma<sub>astro</sub><sup>2</sup>), with sigma<sub>total</sub> = 5 * sqrt(sigma<sub>sys</sub><sup>2</sup>+sigma<sub>stat</sub><sup>2</sup>) and sigma<sub>sys</sub> = 0.1 arcseconds and sigma<sub>astro</sub> = 0.2 arcseconds (astrometric uncertainty). The authors also created a low-probability source catalog (not contained in this present HEASARC table): they caution that, due to the significant number of spurious sources in the low-probability catalog, it should NOT be used to select X-ray sources or to increase the sample size of X-ray-selected objects. It can be of interest if the scientific goal requires one to EXCLUDE potential X-ray emitting objects from a sample with a high completeness, since, using this strategy, one accepts those objects that are excluded are not associated with an X-ray-emitting object. The low-probability source catalog (available at <a href="http://cdsarc.u-strasbg.fr/ftp/cats/J_MNRAS/446/911/">http://cdsarc.u-strasbg.fr/ftp/cats/J_MNRAS/446/911/</a> as the files lowpscat.dat.gz and lowpscat.fits) has a lower maximum likelihood threshold than the main source catalog (an internal threshold of ML = 5, corresponding to ML<sub>empir</sub> ~9.5). This catalog contains 626 detected sources, of which 506 are located within the deep Subaru imaging region. Based on their simulated data, the authors conclude that 19% of all the low-probability source catalog entries are false detections. Considering only the deep Subaru imaging area the spurious source fraction drops to 15%. When using information from this catalog, please cite the reference paper: Krumpe et al. (2015, MNRAS, 446, 911). This table was created by the HEASARC in August 2015 based on CDS table J/MNRAS/446/911 files mainscat.dat, the main source catalog. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://CDS.VizieR/J/MNRAS/420/585
- Title:
- AKARI observations of SMC Cepheids
- Short Name:
- J/MNRAS/420/585
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment III (OGLE-III) catalogue to derive the mid-infrared period-luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colours obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7-, S11-, L15- and L24-band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were N3=-3.370logP+16.527 and N4=-3.402logP+16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.
748. AKARI ObsTAP service
- ID:
- ivo://jvo/isas/darts/akari/ObsTAP
- Title:
- AKARI ObsTAP service
- Short Name:
- AKARI_OBSTAP
- Date:
- 29 May 2024 05:06:13
- Publisher:
- JVO
- Description:
- This is an ObsTAP service for AKARI data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/394/375
- Title:
- AKARI photometric redshift accuracy
- Short Name:
- J/MNRAS/394/375
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the photometric redshift accuracy achievable with the AKARI infrared data in deep multiband surveys, such as in the North Ecliptic Pole field. We demonstrate that the passage of redshifted polycyclic aromatic hydrocarbons (PAH) and silicate features into the mid-infrared wavelength window covered by AKARI is a valuable means to recover the redshifts of starburst galaxies. To this end, we have collected a sample of ~60 galaxies drawn from the Great Observatories Origins Deep Survey-North Field with spectroscopic redshift 0.5<~zspec<~1.5 and photometry from 3.6 to 24um, provided by the Spitzer, Infrared Space Observatory and AKARI satellites. The infrared spectra are fitted using synthetic galaxy spectral energy distributions which account for starburst and active nuclei emission. For ~90 per cent of the sources in our sample, the redshift is recovered with an accuracy |zphot-zspec|/(1+zspec)~<10%. A similar analysis performed on a set of simulated spectra shows that the AKARI infrared data alone can provide photometric redshifts accurate to |zphot-zspec|/(1+zspec)~10% (1sigma) at z~<2 . At higher redshifts, the PAH features are shifted outside the wavelength range covered by AKARI and the photo-z estimates rely on the less prominent 1.6um stellar bump; the accuracy achievable in this case on (1+z) is ~10-15%, provided that the active galactic nuclei contribution to the infrared emission is subdominant. Our technique is no more prone to redshift aliasing than optical-ultraviolet photo-z, and it may be possible to reduce this aliasing further with the addition of submillimetre and/or radio data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/474/5363
- Title:
- AKARI-SDSS-6dFGS-2MRS galaxy sample
- Short Name:
- J/MNRAS/474/5363
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z<=0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160um) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160um filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is {OMEGA}_IR_=1.19+/-0.05x10^8^L_{sun}_/Mpc^3^. The contributions from luminous IR galaxies and ultraluminous IR galaxies to {OMEGA}_IR_ are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.