- ID:
- ivo://nasa.heasarc/ngc752xmm
- Title:
- NGC 752 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC752XMM
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table provides a list of X-ray sources detected in a ~50 ks XMM-Newton X-ray observation of the open cluster NGC 752. For the sources with 2MASS counterparts, the values of their magnitudes in the J, H and K bands are also given. Additionally, for the sources with a Chandra counterpart (within a search radius of 5 arcsec), the values of their Chandra source number (as given in the related Browse table NGC752CXO) are also given. Very little is known about the evolution of stellar activity between the ages of the Hyades (0.8 Gyr) and the Sun (4.6 Gyr). To gain information on the typical level of coronal activity at a star's intermediate age, the authors have studied the X-ray emission from stars in the 1.9 Gyr-old open cluster NGC 752. They analyzed a ~ 140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. They detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field of view are detected in the X-ray observation. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. These data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity L<sub>x</sub> of the cluster members with masses of 0.8 to 1.2 solar masses is 1.3 x 10<sup>28</sup> erg s<sup>-1</sup>, which is approximately a factor of 6 times less intense than that observed in the younger Hyades. Given that L<sub>x</sub> is proportional to the square of a star's rotational rate, the median L<sub>x</sub> of NGC 752 is consistent, for t >= 1 Gyr, with a decaying rate in rotational velocities v<sub>rot</sub> ~ t<sup>-alpha</sup> with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than that observed between the Pleiades and the Hyades (where alpha <0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at an age of ~ 1 Gyr. NGC 752 was observed for 49 ks by the XMM-Newton EPIC camera on February 5, 2003 starting at 23:29:25 UT, and the nominal pointing was towards J2000.0 RA and Declination of (01:57:38, +37:47:60), thus the XMM-Newton field-of-view (FOV) includes the Chandra FOV. For the source detection, the authors used the PWXDETECT code developed at Palermo Observatory and derived from the analogous Chandra PWDETECT code based on wavelet transform analysis. This allows the three EPIC exposures (PN, MOS1 and MOS2) to be combined in order to gain a deeper sensitivity with respect to the source detection based on single images. There were 145 point sources detected in the energy band 0.5 - 2.0 keV. An extended source (not listed in this present table), very likely a galaxy cluster, is also visible in the EPIC data. The authors searched for 2MASS counterparts to the XMM-Newton sources using a search radius of 5 arcsec and found a counterpart for 38 sources. As for the Chandra data, all sources with a visible counterpart from DLM94 have also a 2MASS counterpart, so this leaves 15 XMM-Newton sources with a 2MASS counterpart and no counterpart in Daniel et al. (1994, PASP, 106, 281); of these, 3 were also detected by Chandra; of the other 12, 10 are outside the Chandra FOV, while two are within it (XMM-Newton sources 58 and 65). Source 65 was caught by XMM-Newton during the decay phase of a flare, which explains why it is not detected in the Chandra data. For source 58 there is no immediate explanation for this, since the light curve does not show evidence of a flare. No additional near-IR counterpart to the XMM-Newton sources was found within the Point Source Reject Table of the 2MASS Extended Mission. This table was created by the HEASARC in October 2008 based on the electronic version of Table 7 from the reference paper which was obtained from the CDS website, i.e., their catalog J/A+A/490/113 file table7.dat. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/ngc253xmm
- Title:
- NGC 253 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC253XMM
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the NGC 253 XMM-Newton X-Ray Point Source Catalog. NGC 253 is a local, starbursting spiral galaxy with strong X-ray emission from hot gas, as well as many point sources. The authors have conducted a spectral survey of the X-ray population of NGC 253 using a deep XMM-Newton observation. NGC 253 only accounts for ~20 per cent of the XMM-Newton EPIC field of view, allowing them to identify ~ 100 X-ray sources that are unlikely to be associated with NGC 253. Hence, they were able to make a direct estimate of contamination from, for example, foreground stars and background galaxies. X-ray luminosity functions (XLFs) of galaxy populations are often used to characterize their properties. There are several methods for estimating the luminosities of X-ray sources with few photons. The authors have obtained spectral fits for the brightest 140 sources in the 2003 XMM-Newton observation of NGC 253, and compare the best-fitting luminosities of those 69 non-nuclear sources associated with NGC 253 with luminosities derived using other methods. They find the luminosities obtained from these various methods to vary systematically by a factor of up to 3 for the same data; this is largely due to differences in absorption. The authors therefore conclude that assuming Galactic absorption is probably unwise; rather, one should measure the absorption for the population. In addition, they find that standard estimations of the background contribution to the X-ray sources in the field are insufficient, and that the background active galactic nuclei (AGN) may be systematically more luminous than previously expected. However, the excess in their measured AGN XLF with respect to the expected XLF may be due to an as yet unrecognized population associated with NGC253. XMM-Newton observations are susceptible to periods of high background levels, caused by increased flux of solar particles. The authors screened the data from each of the EPIC cameras (MOS1, MOS2 and pn), to remove flaring intervals. This process resulted in ~ 46 ks of good time for the pn and ~ 69 ks for the MOS cameras. The authors combined the cleaned MOS and pn data, and ran the source detection algorithm provided with the XMM-Newton data analysis suite SAS version 7.0. They accepted sources with maximum-likelihood detections > 10 (equivalent to 4 sigma). This table was created by the HEASARC in April 2009 based on the electronic version of Tables A1 and A2 from the paper which were obtained from the CDS (their catalog J/MNRAS/388/849 files tablea1.dat and tablea2.dat). This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6231xmm
- Title:
- NGC 6231 XMM-Newton X-Ray Source Catalog
- Short Name:
- NGC6231XMM
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the results of an X-ray campaign towards the young open cluster NGC 6231. The XMM-Newton observations, of a total duration of ~ 180 ks, reveal that NGC 6231 is very rich in the X-ray domain too. Indeed, 610 X-ray sources were detected in the present field of view, centered on the colliding wind binary HD 152248 in the cluster core (RA, Dec J2000.0 of 16 54 10.06, -41 49 30.1). The limiting sensitivity of this survey is approximately 6 x 10^-15<sup>erg/s/cm</sup>2 but clearly depends on the location in the field of view and on the source spectrum. Using different existing catalogs, over 85% of the X-ray sources could be associated with at least one optical and/or infrared counterpart within a limited cross-correlation radius of 2.5 or 3-arcsec according to the optical/IR catalog used. The surface density distribution of the X-ray sources presents a slight N-S elongation. Once corrected for the spatial sensitivity variation of the EPIC instruments, the radial profile of the source surface density is well described by a King profile with a central density of about 8 sources per arcmin<sup>2</sup> and a core radius close to 3.1 arcminutes. The distribution of the X-ray sources seems closely related to the optical source distribution. The expected number of foreground and background sources should represent about 9% of the detected sources, thus strongly suggesting that most of the observed X-ray emitters are physically belonging to NGC 6231. Finally, beside a few bright but soft objects -- corresponding to the early-type stars of the cluster -- most of the sources are relatively faint (~5 x 10<sup>-15</sup> erg/s/cm<sup>2</sup>) with an energy distribution peaked around 1.0 - 2.0 keV. The catalog of the 610 X-ray sources detected in the 30'-diameter field of view of XMM-Newton is presented here, including the equatorial coordinates, logarithmic likelihoods and count rates for the three EPIC instruments and for various energy ranges, as well as the cross-identification of the X-ray sources with various optical/infrared catalogs (2MASS, GSC2.2, USNO B1.0, SSB06) and their most commonly used names (HD/HDE, CD, CPD, Segg., SBL98, Braes), with only the closest identifications being reported here. This table was created by the HEASARC in March 2007 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/454/1047">CDS catalog J/A+A/454/1047</a> files table3.dat and table6.dat. This is a service provided by NASA HEASARC .
624. NICER Master Catalog
- ID:
- ivo://nasa.heasarc/nicermastr
- Title:
- NICER Master Catalog
- Short Name:
- NICERMASTR
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table records high-level information for the observations obtained with NICER (Neutron star Interior Composition ExploreR) and provides access to the NICER data archive. NICER is a NASA Explorer program Mission of Opportunity dedicated to the study of the neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei. NICER instrument is a payload aboard the International Space Station (ISS). It was launched on 3 June 2017 on a SpaceX Falcon 9 rocket and placed on the ISS. Normal operation started on 17 July 2017 after a commission phase to test the system and perform initial calibration. NICER's X-ray Timing Instrument (XTI) consists of an aligned collection of 56 X-ray "concentrator" optics (XRC) and silicon drift detector (SDD) pairs working in the energy range of 0.2-12 keV. Each XRC collects X-rays over a large geometric area from a roughly 30 arcmin<sup>2</sup> region of the sky and focuses them onto a small SDD. The SDD detects individual photons, recording both energies (with a 3% energy resolution at 6 keV) and high precision times (with 100 nanoseconds RMS relative to Universal Time). During one day of operation, NICER monitors several sources. For each observed source the data are divided into intervals of one day and labeled with a sequence number. This database table contains one record for each sequence number and includes parameters related to the observation. This contents of this database table are generated at the NICER Science and Mission Operations Center (SMOC) and updated regularly with new observations. Note that some fields have been added and are populated by the HEASARC. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/nltt
- Title:
- NLTTCatalog&FirstSupplement
- Short Name:
- NLTT
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This catalog (Luyten 1979, 1980) is a collection of stars on more than 800 Palomar Proper Motion Survey plates found to have relative annual proper motions exceeding 0.18 arcsec. The motions have been determined by Luyten and his coworkers by either hand blinking and measuring or with the automated- computerized scanner and measuring machine built by Control Data Corporation and located at the University of Minnesota. The new catalog replaces the LTT Catalogues (Luyten 1957, 1961, 1962), wherein stars in the Bruce Proper Motion Survey discovered to have motions exceeding 0.2 arcsec had been compiled. For further information on the NLTT Catalogue itself, including discussions of positional errors, estimation of magnitudes, star designations used in the catalog, completeness, and accuracy of the measured motions, the introduction to the published NLTT (see Volume I) should be consulted. The First Supplement to the NLTT Catalogue (Luyten and Hughes 1980) is the result of continued plate analysis and measurements during printing of the NLTT. The Supplement contains data for 398 stars having motions larger than 0.179 arcsec annually. Duplicate entries were removed from the HEASARC implementation of this catalog in June 2019. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/narcscat
- Title:
- NormaArmRegionChandraSurveyPoint&ExtendedSourceCatalog
- Short Name:
- NARCSCAT
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the catalog of 1,415 X-ray sources identified in the Norma Arm Region Chandra Survey (NARCS), which covers a 2 degree x 0.8 degree region in the direction of the Norma spiral arm to a depth of ~ 20 ks. Of these sources, 1,130 are point-like sources detected with >= 3-sigma confidence in at least one of three energy bands (0.5 - 10, 0.5 - 2, and 2 - 10 keV), five have extended emission, and the remainder are detected at low significance. Since most sources have too few counts to permit individual classification, they are divided into five spectral groups defined by their quantile properties. The authors analyze stacked spectra of X-ray sources within each group, in conjunction with their fluxes, variability, and infrared counterparts, to identify the dominant populations in this survey. They find that ~ 50% of their sources are foreground sources located within 1 - 2 kpc, which is consistent with expectations from previous surveys. Approximately 20% of sources are likely located in the proximity of the Scutum-Crux and near Norma arm, while 30% are more distant, in the proximity of the far Norma arm or beyond. The authors argue that a mixture of magnetic and non-magnetic cataclysmic variables dominates the Scutum-Crux and near Norma arms, while intermediate polars and high-mass stars (isolated or in binaries) dominate the far Norma arm. In the paper, they also present the cumulative number count distribution for sources in this survey that are detected in the hard energy band. A population of very hard sources in the vicinity of the far Norma arm and active galactic nuclei dominate the hard X-ray emission down to f<sub>X</sub> ~ 10<sup>-14</sup> erg cm<sup>-2</sup> s<sup>-1</sup>, but the distribution curve flattens at fainter fluxes. The authors find good agreement between the observed distribution and predictions based on other surveys. Chandra ACIS-I observations were performed in faint mode of a 2 degree by 0.8 degree region of the Norma spiral arm in 2011 June. This field was subdivided into 27 pointings; Table 1 in the reference paper reports their coordinates and exposure times and Figure 1 (op. cit.) is a mosaic image of the survey. The observing strategy was to cover a wide area with relatively uniform flux sensitivity and good spatial resolution; therefore, the authors chose field centers spaced by 12 arcminutes, which provided roughly 70 arcminute<sup>2</sup> of overlap on the outskirts of adjacent observations such that the additional exposure time in these overlapping regions partly made up for the worsening point-spread function (PSF) at large off-axis angles. This table was created by the HEASARC in March 2015 based on electronic versions of Tables 3, 4 and 5 from the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/napexmmcxo
- Title:
- NorthAmerica(NGC7000)&Pelican(IC5070)NebulaeX-RaySourceCatalog
- Short Name:
- NAPEXMMCXO
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from the first extensive X-ray study of the North-America and Pelican star-forming region (NGC 7000/IC 5070), with the aim of finding and characterizing the young population of this cloud. X-ray data from Chandra (four pointings) and XMM-Newton (seven pointings) were reduced and source detection algorithm applied to each image. The authors complement the X-ray data with optical and near-IR data from the IPHAS, UKIDSS, and 2MASS catalogs, and with other published optical and Spitzer IR data. More than 700 X-ray sources are detected, the majority of which have an optical or NIR counterpart. This allowed the authors to identify young stars in different stages of formation. Less than 30% of the X-ray sources are identified with a previously known young star. the authors argue that most X-ray sources with an optical or NIR counterpart, except perhaps for a few tens at near-zero reddening, are likely candidate members of the star-forming region, on the basis of both their optical and NIR magnitudes and colors, and of their X-ray properties such as spectral hardness or flux variations. They are characterized by a wide range of extinction, and sometimes near-IR excesses, both of which prevent derivation of accurate stellar parameters. The optical color-magnitude diagram suggests ages between 1-10 Myr. The X-ray members have a very complex spatial distribution with some degree of subclustering, qualitatively similar to that of previously known members. The detailed distribution of X-ray sources relative to the objects with IR excesses identified with Spitzer is sometimes suggestive of sequential star formation, especially near the 'Gulf of Mexico' region, probably triggered by the O5 star which illuminates the whole region. The authors confirm that around the O5 star no enhancement in the young star density is found, in agreement with previous results. Thanks to the precision and depth of the IPHAS and UKIDSS data used, the authors also determine the local optical-IR reddening law, and compute an updated reddening map of the entire region. This table contains the catalog of X-ray sources, with their optical and near-IR identifications, in the NGC 7000/IC 5070 (North America/Pelican) star formation complex. The final X-ray source list comprises 721 objects, of which there are 378 ACIS detections (of which 34 have an XMM-Newton counterpart), and 343 XMM-Newton-only detection. The chosen detection threshold, corresponding to approximately one spurious detection per field, ensures that no more than approximately ten of the 721 detections are spurious. The 11 XMM-Newton and Chandra fields analyzed in this study are listed in Tables 1 and 2, respectively, of the reference paper. This table was created by the HEASARC in July 2017 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/602/A115">CDS Catalog J/A+A/602/A115</a> file table3.dat, the list of detected X-ray sources in the North America (NGC 7000) & Pelican Nebulae (IC 5070), and file table4.dat, the list of optical and near-IR photometric information for the counterparts of these X-ray sources. It does not contain table5.dat, the list of X-ray undetected stars that have IR or H-alpha excesses. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ncp21cma
- Title:
- North Celestial Pole Region Radio Sources Detected by the 21cm Array
- Short Name:
- NCP21CMA
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12-hr observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ~4 arcminutes. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called "w" term and ionospheric effects, the present analysis is restricted to the east-west baselines within 1500 m only. 624 radio sources are found within 5 degrees around the NCP down to ~0.1 Jy (100 mJy). These source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ~1 Jy, the authors find a flattening trend of source counts toward lower frequencies. While the thermal noise (~0.4 mJy) is well controlled to below the confusion limit, the dynamical range (~10<sup>4</sup>) and sensitivity of current 21CMA imaging are largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field, which result from the regular spacings of the 21CMA. The authors note that particular attention should be paid to the extended sources, and their modeling and removal may constitute a large technical challenge for current EoR experiments. Their analysis may serve as a useful guide to the design of next generation low-frequency interferometers like the Square Kilometre Array (SKA). The 21CMA is a ground-based radio interferometer dedicated to the detection of the EoR. The array, sited in the Ulastai valley of western China, consists of 81 pods or stations, and a total of 10,287 log-periodic antennas are deployed in two perpendicular arms along the east-west (6.1 km) (see Figure 1 in the reference paper) and north-south (4 km) directions, respectively. The spacing of these 81 pods is chosen such that a sufficiently large number of redundant baselines and a good uniform UV coverage can both be guaranteed. Each antenna element has 16 pairs of dipoles with lengths varying from 0.242 to 0.829 m, optimized to cover a frequency range of 50-200 MHz, which gives rise to an angular resolution of 3 arcminutes at 200 MHz. All of the antennas are fixed on the ground and point at the NCP for the sake of simplicity and economy. In the current work, the radio point sources observed with the 40 pods of the 21 Centimeter Array (21CMA) E-W baselines in an integration of 12 hours made on 2013 April 13 centered on the North Celestial Pole (NCP) are presented. An extra deep sample with a higher sensitivity from a longer integration time of up to years will be published later. The authors have detected a total of 624 radio sources over the central field within 3 degrees in a frequency range of 75-175 MHz band and in the outer annulus from 3-5 degrees in the 75-125 MHz band. By performing a Monte-Carlo simulation, the authors estimate a completeness of 50% at a flux density of ~0.2 Jy. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/832/190">CDS Catalog J/ApJ/832/190</a> file table3.dat. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/noras
- Title:
- Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey Catalog
- Short Name:
- NORASGalClus
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- In the construction of an X-ray-selected sample of galaxy clusters for cosmological studies, the authors have assembled a sample of 495 X-ray sources which were found to show extended X-ray emission in the first processing of the ROSAT All-Sky Survey (RASS I), the Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey Catalog. The sample covers the celestial region with declination >=0 degrees and Galactic latitude |b| >= 20 degrees, and comprises sources with a Position Sensitive Proportional Counter (PSPC) count rate >= 0.06 counts/s and a source extent likelihood of L >= 7. In an optical follow-up identification program, the authors found 378 (76%) of these sources to be clusters of galaxies. It was necessary to reanalyze the sources in this sample with a new X-ray source characterization technique to provide more precise values for the X-ray flux and source extent than obtained from the standard processing. This new method, termed growth curve analysis (GCA), has the advantage over previous methods in its ability to be robust, to be easy to model and to integrate into simulations, to provide diagnostic plots for visual inspection, and to make extensive use of the X-ray data. The source parameters obtained assist the source identification and provide more precise X-ray fluxes. This reanalysis is based on data from the more recent second processing of the ROSAT Survey, RASS II. The authors present a catalog of the cluster sources with the X-ray properties obtained as well as a list of the previously flagged extended sources that are found to have a non-cluster counterpart. In their paper, they discuss the process of source identification from the combination of optical and X-ray data. To investigate the overall completeness of the cluster sample as a function of the X-ray flux limit, they extended the search for X-ray cluster sources to the RASS II data for the northern sky region between 9 and 14 hours in right ascension. They included the search for X-ray emission from known galaxy clusters as well as a new investigation of extended X-ray sources. In the course of this search, they found X-ray emission from 85 additional Abell clusters and 56 very probable cluster candidates among the newly found extended sources. A comparison of the X-ray cluster number counts of the NORAS sample with the ROSAT-ESO Flux-limited X-ray (REFLEX) Cluster Survey results leads to an estimate of the completeness of the NORAS sample of ROSAT All-Sky Survey (RASS) I extended clusters of about 50% at an X-ray flux of FX(0.1-2.4 keV) = 3 x 10-12 ergs s<sup>-1</sup> cm<sup>-2</sup>. The estimated completeness achieved by adding the supplementary sample in the study area amounts to about 82% in comparison to REFLEX. The low completeness introduces an uncertainty in the use of the sample for cosmological statistical studies that will be cured with the completion of the continuing Northern ROSAT All-Sky (NORAS) Cluster Survey project. This table was created by the HEASARC in June 2005 based on CDS table J/ApJS/129/435, table1.dat through table9.dat inclusive. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/nvss
- Title:
- NRAO VLA Sky Survey Catalog
- Short Name:
- NVSS
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) Sky Survey, the so-called NVSS Catalog. The NVSS Catalog covers the sky north of the J2000.0 Declination of -40 degrees (82% of the celestial sphere) at 1.4 GHz. The principal data products of the NVSS were (1) a set of 2326 4 degree by 4 degree continuum "cubes" with three planes containing Stokes I, Q, and U images, plus (2) a catalog of almost 2 million discrete sources stronger than a flux density S of about 2.5 mJy. The images all have 45 arcsecond FWHM angular resolution and nearly uniform sensitivity. Their rms brightness fluctuations are approximately 0.45 mJy/beam = 0.14 K (Stokes I) and approximately 0.29 mJy/beam = 0.09 K (Stokes Q and U). The rms uncertainties in right ascension and declination vary from <= ~1 arcsecond for the 400,000 sources stronger than 15 mJy to 7 arcseconds at the survey limit. The NVSS was made as a service to the astronomical community. All data products, user software, and updates were released via the World-Wide Web as soon as they were produced and verified. For more complete information on the NVSS, please refer to the NVSS website at <a href="http://www.cv.nrao.edu/nvss/">http://www.cv.nrao.edu/nvss/</a> This table was created by the HEASARC in October 2002 based on the file <a href="ftp://ftp.cv.nrao.edu/nvss/CATALOG/NVSSCatalog.text.gz">ftp://ftp.cv.nrao.edu/nvss/CATALOG/NVSSCatalog.text.gz</a> provided by the NVSS Catalog's authors. It was updated by the HEASARC in June 2009 to fix a problem with the original ingest in which the leading digit of some flux fields was lost. This is a service provided by NASA HEASARC .