- ID:
- ivo://nasa.heasarc/pdsoid
- Title:
- Phoenix Deep Survey Optical and Near-Infrared Counterparts Catalog
- Short Name:
- PDSOID
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Using a deep Australia Telescope Compact Array (ATCA) radio survey covering an area of ~3 deg<sup>2</sup> to a 4-sigma sensitivity of >= 100 µJy (µJy) at 1.4 GHz, the authors study the nature of faint radio galaxies. The region, 2 degrees in diameter and centered on RA and Dec (J2000.0) of 1<sup>h</sup> 14<sup>m</sup> 12.16<sup>s</sup>, -45<sup>o</sup> 44' 08.0" (Galactic latitude of -71<sup>o</sup>), is known as the Phoenix Deep Field. About 50% of the detected radio sources are identified with an optical counterpart revealed by CCD photometry to m<sub>R</sub> = 22.5 magnitudes. Near-infrared (K-band) data are also available for a selected sample of the radio sources, while spectroscopic observations have been carried out for about 40% of the optically identified sample. These provide redshifts and information on the stellar content. Emission-line ratios imply that most of the emission-line sources are star-forming galaxies, with a small contribution (~ 10%) from Seyfert 1/Seyfert 2 type objects. The authors also find a significant number of absorption-line systems, likely to be ellipticals. These dominate at high flux densities ( > 1 mJy) but are also found at sub-mJy levels. Using the Balmer decrement, they find a visual extinction A<sub>V</sub> = 1.0 for the star-forming faint radio sources. This moderate reddening is consistent with the (V - R) and (R - K) colors of the optically identified sources. For emission-line galaxies, there is a correlation between the radio power and the H-alpha luminosity, in agreement with the result of Benn et al. (1993, MNRAS, 263, 98). This suggests that the radio emission of starburst radio galaxies is a good indicator of star formation activity. When calculating luminosities, the authors assume a cosmology with a Hubble constant H<sub>0</sub> of 50 km s<sup>-1</sup> Mpc<sup>-1</sup> and a deceleration parameter q<sub>0</sub> of 0.5. This table was created by the HEASARC in June 2013 based on an electronic version of Table 1 from the reference paper, which details the photometric (optical and near-infrared), radio, spectroscopic and intrinsic properties of the faint radio sources in the PDS with established redshifts, which was obtained from the CDS web site (their catalog J/MNRAS/306/708 file table1.dat). This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/pdsoid2
- Title:
- Phoenix Deep Survey Optical and Near-Infrared Counterparts Catalog 2
- Short Name:
- PDSOID2
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Phoenix Deep Survey (PDS) is a multi-wavelength galaxy survey based on deep 1.4-GHz radio imaging. The revised version of the radio source catalog was published by Hopkins et al. (2003). The primary goal of the PDS is to investigate the properties of star formation in galaxies and to trace the evolution in those properties to a redshift z = 1, covering a significant fraction of the age of the universe. By compiling a sample of star-forming galaxies based on selection at radio wavelengths, Sullivan et al. (2004, the reference paper for this present catalog) eliminate possible biases due to dust obscuration, a significant issue when selecting objects at optical and ultraviolet wavelengths. In this study, they present the catalogs and results of deep optical (UBVRI) and near-infrared (K<sub>s</sub>) imaging of the deepest region of the existing decimetric radio imagery. The observations and data processing are summarized and the construction of the optical source catalogs described in their paper, together with the details of the identification of candidate optical counterparts to the radio catalogs. Based on their UBVRIK<sub>s</sub> imaging, photometric redshift estimates for the optical counterparts to the radio detections are explored. Two pointings (labeled 7 and 3 in Table 1 of the reference paper) were observed in BVRi, and one (pointing 11 in ibid.) in BVi on the nights of 2001 August 13 and 14, with the WFI camera on the Anglo-Australian Telescope (AAT). The same three pointings were also observed in U with the Mosaic-II camera on the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope on 2002 September 3. Finally, four of the PDS fields (2, 3, 6, 7) were observed in U with the WFI on the European Southern Observatory (ESO) 2.2-m telescope on the night of 2001 August 18. The NIR imaging data come from the Hawaii HgCdTe 1024 x 1024 pixel array SoFI camera on the 3.6-m ESO New Technology Telescope (NTT). The field of view was 4.9' x 4.9' with a pixel scale of 0.29". Nine contiguous pointings, in a 3 x 3 pattern, were observed over the deepest region of the PDS (a sub-region of pointing 7; see Fig. 1 of the reference paper), during 2000 October 10 and October 11. Throughout this study, the authors assume an Omega<sub>Lambda</sub> = 0.7, Omega<sub>M</sub> = 0.3, h = 0.70 (where H<sub>0</sub> = 100 h km s<sup>-1</sup> Mpc<sup>-1</sup>) cosmology. This table was created by the HEASARC in June 2013 based on an electronic version of Table 6 from the reference paper, which details the photometric (optical and near-infrared) properties and redshifts of 778 radio sources in the PDS, which was obtained from the CDS web site (their catalog J/ApJS/155/1 file table6.dat). The HEASARC has changed the name prefixes of the sources in this table from 'PDS' (Phoenix Deep Survey) to 'PDF' (Phoenix Deep Field) as recommended by the CDS Dictionary of Astronomical Nomenclature. Three duplicate entries were removed from the catalog in June 2019. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pacobscat
- Title:
- Planck-ATCA Co-eval Observations (PACO) Project Bright Sample Catalog
- Short Name:
- PACOBSCAT
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Planck Australia Telescope Compact Array (Planck-ATCA) Co-eval Observations (PACO) have provided flux density measurements of well-defined samples of Australia Telescope 20-GHz (AT20G) radio sources at frequencies below and overlapping with Planck frequency bands, almost simultaneously with Planck observations. The authors have observed with the ATCA a total of 482 sources in the frequency range between 4.5 and 40 GHz in the period between 2009 July and 2010 August. Several sources were observed more than once. In their paper, the authors present the aims of the project, the selection criteria, and the observation and data reduction procedures. They also discuss the data in total intensity for a complete sample of 189 sources with 20-GHz flux densities > 500 mJy, Galactic latitude |b| > 5 degrees and Declination < -30 degrees, and some statistical analysis of the spectral behavior and variability of this sample, referred to as the 'bright PACO sample'. Finally, the authors discuss how these data could be used to transfer absolute calibrations to ground-based telescopes using the cosmic microwave background dipole calibrated flux densities measured by the Planck satellite, and they provide some test fluxes on bright calibrators. This table contains the catalog of 1004 observations of 180 of the 189 sources that comprise the 'bright PACO sample'. Thus, each row in this table corresponds to a specific observation of a source, and there can be several rows for any source, corresponding to different observations. The ATCA observations were made in 6 2-GHz wide observing bands: 4732 - 6780 MHz, 8232 - 10280 MHz, 17232 - 19280 MHz, 23232 - 25280 MHz, 32232 - 34280 MHz and 38232 - 40280 MHz. In order to properly define the detailed source spectral behavior, the authors have split each 2-GHz band into 4 x 512 MHz sub-bands, and calibrated each sub-band independently. Thus, for each observation, the flux density at 24 frequencies is given. The frequency identifier in the flux density appears (at least to this HEASARC scientist) to be the lower frequency of the sub-band rather than its central frequency. In order to provide the easiest way to extrapolate the observed counts or model predictions from one frequency to another, the authors have modeled the observed source spectra. As their observations covered a wide frequency range from 4.5 to 40 GHz over which a single power law is not enough to describe the spectral behavior of the sources, they studied the spectra of the 174 point-like sources in this sample by fitting the observed data with a double power law of the form S<sub>nu</sub> = S<sub>0</sub>/[(nu/nu<sub>0</sub>)<sup>-a</sup> + (nu/nu<sub>0</sub>)<sup>-b</sup>], where nu is the frequency, S<sub>nu</sub> is the flux density in Jy, and S<sub>0</sub>, nu<sub>0</sub>, a and b are free parameters. The authors considered only those sources for which they had at least four data points for each of the 2 x 2 GHz bands considered. Full details of the fitting procedure are given in Section 3.1 of the reference paper. This table was created by the HEASARC in January 2014 based on the machine-readable version of Table S1 from the reference paper which was obtained from the CDS (their catalog J/MNRAS/415/1597 file table1.dat). This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pacofscat
- Title:
- Planck-ATCA Co-eval Observations (PACO) Project Faint Sample Catalog
- Short Name:
- PACOFSCAT
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Planck-ATCA Co-eval Observations (PACO) project collected data between 4.5 and 40 GHz for 482 sources selected within the Australia Telescope 20-GHz (AT20G) catalog and observed with the Australia Telescope Compact Array (ATCA). Observations were done almost simultaneously with the Planck satellite, in the period between 2009 July and 2010 August. In this paper, the authors present and discuss the data for the complete sample of 159 sources with AT20G flux densities > 200 mJy in the South Ecliptic Pole (SEP) region. The Planck Early Release Compact Source Catalogue (ERCSC) contains 57 of their sources. A comparison between the PACO catalog and the ERCSC confirms that the reliability of the latter is better than 95%. The missing ERCSC sources are typically associated with the Large Magellanic Cloud, the Milky Way or are otherwise extended. The spectral analysis of the PACO faint catalog shows a spectral steepening of the sources at high frequencies, confirming the results obtained from the PACO bright sample (the HEASARC PACOBSCAT table). A comparison with AT20G measurements, carried out, on average, a few years earlier, has demonstrated that, on these time-scales, these sources show a rather high variability with an rms amplitude of approximately 40% at 20 GHz. The source spectral properties are found not to vary substantially with flux density, except for an increase in the fraction of steep spectrum sources at fainter flux densities. These data also allow the authors to extend by a factor of ~ 5 downwards in flux density the source counts at ~ 33 and ~ 40 GHz obtained from the ERCSC. This allows the authors to substantially improve their control on the contribution of unresolved extragalactic sources to the power spectrum of small-scale fluctuations in cosmic microwave background (CMB) maps. The PACO faint sample, presented in this paper, is made up of 159 sources with 20-GHz flux densities >= 200 mJy in the SEP region (ecliptic latitude < -75 degrees) and with 3h < RA < 9h, Dec. < -30 degrees. Near the Ecliptic Poles, Planck's scan circles intersect. Therefore, the area is covered many times, and Planck's sensitivity is maximal in these regions. A full description of the PACO project and of its main goals is given in Massardi et al. (2011, MNRAS, 415, 1597). The aims specific to the PACO faint sample are as follows: (i) Extend to fainter flux densities the characterization of radio source spectra from 4.5 GHz to the Planck frequency range; (ii) Extend the determination of source counts at ~ 33 and ~ 40 GHz obtained from the analysis of the ERCSC downwards in flux density by a factor of ~ 5. Going down in flux density is important to control the contamination of CMB maps by faint radio sources. This table contains the catalog of 674 observations of 152 of the 159 sources that comprise the 'faint PACO sample'. Thus, each row in this table corresponds to a specific observation of a source, and there can be several rows for any source, corresponding to different observations. The ATCA observations were made in 6 2-GHz wide observing bands: 4732 - 6780 MHz, 8232 - 10280 MHz, 17232 - 19280 MHz, 23232 - 25280 MHz, 32232 - 34280 MHz and 38232 - 40280 MHz. In order to properly define the detailed source spectral behavior, the authors have split each 2-GHz band into 4 x 512 MHz sub-bands, and calibrated each sub-band independently. Thus, for each observation, the flux density at 24 frequencies is given. The frequency identifier in the flux density appears (at least to this HEASARC scientist) to be the lower frequency of the sub-band rather than its central frequency. In order to provide the easiest way to extrapolate the observed counts or model predictions from one frequency to another, the authors have modeled the observed source spectra. As their observations covered a wide frequency range from 4.5 to 40 GHz over which a single power law is not enough to describe the spectral behavior of the sources, they studied the spectra of the 174 point-like sources in this sample by fitting the observed data with a double power law of the form S<sub>nu</sub> = S<sub>0</sub>/[(nu/nu<sub>0</sub>)<sup>-a</sup> + (nu/nu<sub>0</sub>)<sup>-b</sup>], where nu is the frequency, S<sub>nu</sub> is the flux density in Jy, and S<sub>0</sub>, nu<sub>0</sub>, a and b are free parameters. The authors considered only those sources for which they had at least four data points for each of the 2 x 2 GHz bands considered. When observations at more than one epoch were available, the authors chose the one with the greatest number of data points. Full details of the fitting procedure are given in Section 3.1 of Massardi et al. (2011, MNRAS, 415, 1597) and Section 4 of the reference paper. This table was created by the HEASARC in January 2014 based on the machine-readable version of the Paco faint catalog from the reference paper which was obtained from the CDS (their catalog J/MNRAS/416/559 file catalog.dat). This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/planckgcc
- Title:
- Planck Catalog of Galactic Cold Clumps (PGCC)
- Short Name:
- PLANCKGCC
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors present the Planck Catalog of Galactic Cold Clumps (PGCC), an all-sky catalog of Galactic cold clump candidates detected by Planck. This catalog is the full version of the Early Cold Core (ECC) catalog, which was made available in 2011 with the Early Release Compact Source Catalog (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalog is an observational catalog consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353GHz) have been combined with IRAS data at 3THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalog contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows the authors to derive their physical properties such as their mass, physical size, mean density, and luminosity. The PGCC sources are located mainly in the solar neighborhood, but also up to a distance of 10.5kpc in the direction of the Galactic center, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalog contains sources in very different environments, the catalog is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds. This catalog is based on three highest Planck frequency channels (i.e., 857, 545, 353 GHz), which are designed to cover the Galactic cold dust emission peak. The 217 GHz band is not included for two reasons: first, the band is contaminated by the CO J=2->1 emission line, which is expected to be significant towards dense regions; second, the contamination by the cosmic microwave background may become problematic at high latitude. The Planck data are combined with the IRIS all-sky data (Miville-Deschenes & Lagache 2005). The IRIS 3THz (100{mu}m) data were chosen to complement the Planck data because it is a good tracer of Galactic warm (~20 K) dust, among other reasons provided in the paper. This table was created by the HEASARC in March 2019 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A28">CDS Catalog J/A+A/594/A28</a> file pgcc.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pccs857ghz
- Title:
- Planck Catalog of 857-GHz Compact Sources (PCCS) Release 2
- Short Name:
- PCCS857GHZ
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11). As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources. This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 857 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file <a href="http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs857e.dat.gz">http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs857e.dat.gz</a>. Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A26">CDS Catalog J/A+A/594/A26</a> file pccs857.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pccs143ghz
- Title:
- Planck Catalog of 143-GHz Compact Sources (PCCS) Release 2
- Short Name:
- PCCS143GHZ
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11). As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources. This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 143 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file <a href="http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs143e.dat.gz">http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs143e.dat.gz</a>. Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A26">CDS Catalog J/A+A/594/A26</a> file pccs143.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pccs100ghz
- Title:
- Planck Catalog of 100-GHz Compact Sources (PCCS) Release 2
- Short Name:
- PCCS100GHZ
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11). As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources. This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 100 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file <a href="http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs100e.dat.gz">http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs100e.dat.gz</a>. Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A26">CDS Catalog J/A+A/594/A26</a> file pccs100.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pccs030ghz
- Title:
- Planck Catalog of 30-GHz Compact Sources (PCCS) Release 2
- Short Name:
- PCCS030GHZ
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11). As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources. This table contains the PCCS Public Release 2 table of sources detected at 30 GHz. Where the HEASARC parameter names differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A26">CDS Catalog J/A+A/594/A26</a> file pccs030.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/pccs353ghz
- Title:
- Planck Catalog of 353-GHz Compact Sources (PCCS) Release 2
- Short Name:
- PCCS353GHZ
- Date:
- 25 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Planck was a European Space Agency (ESA) mission, with significant contributions from the National Aeronautics and Space Agency (NASA). It was the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 12 August 2009. Planck then continuously measured the intensity of the sky over a range of frequencies from 30 to 857 GHz (wavelengths of 1 cm to 350 micron) with spatial resolutions ranging from about 33 to 5 arcminutes, respectively. The Low Frequency Instrument (LFI) on Planck provided temperature and polarization information using radiometers which operated between 30 and 70 GHz. The High Frequency Instrument (HFI) used pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353 GHz but did not measure polarization information in the two upper HFI bands at 545 and 857 GHz. The lowest Planck frequencies overlapped with WMAP, and the highest frequencies extended far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck provided an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogs, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalog. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow the authors to increase the number of objects in the catalog, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). The Low Frequency Instrument (LFI) Data Processing Center (DPC) produced the 30, 44, and 70 GHz maps after the completion of eight full surveys (spanning the period from 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100-, 143-, 217-, 353-, 545-, and 857-GHz maps after five full surveys (from 2009 August 12 to 2012 January 11). As in the PCCS, the PCCS2 provides four different measures of the flux density for each source. They are determined by the source detection algorithm (DETFLUX), aperture photometry (APERFLUX), point spread function fitting (PSFFLUX), and Gaussian fitting (GAUFLUX). Only the first is obtained from the filtered maps; the other measures are estimated from the full-sky maps at the positions of the sources. The source detection algorithm photometry, the aperture photometry, and the point spread function (PSF) fitting use the Planck band-average effective beams, calculated with FEBeCoP (Fast Effective Beam Convolution in Pixel space). Note that only the PSF fitting algorithm takes into account the variation of the PSF with position on the sky. The PCCS2 has been produced from the Planck full-mission maps (eight sky surveys in the LFI and five sky surveys in the HFI), and therefore supersedes the previous catalogs (for the PCCS only 1.5 surveys were analyzed). It also includes the latest calibration and beam information, and the authors have improved some of the algorithms used to measure the photometry of the sources. This table contains the PCCS2 subsample of the PCCS Public Release 2 table of sources detected at 353 GHz. One of the primary differences of this release of the PCCS from previous releases is the division of the six highest frequency catalogs into two subcatalogs, the PCCS2 and the PCCS2E. This division separates sources for which the reliability (the fraction of sources above a given S/N which are real) can be quantified (PCCS2) from those of unknown reliability (PCCS2E). This separation is primarily based on the Galactic coordinates of the source, as described in Section 2.3 of the reference paper. The PCCS2E subcatalog for this frequency is not included in this HEASARC table but is available at the CDS as the file <a href="http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs353e.dat.gz">http://cdsarc.u-strasbg.fr/ftp/cats/J/A+A/594/A26/pccs353e.dat.gz</a>. Where the HEASARC parameter names in this table differ from those used in the original table, the original names are listed parenthetically in upper case at the end of the parameter description. This table was created by the HEASARC in May 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/594/A26">CDS Catalog J/A+A/594/A26</a> file pccs353.dat. This is a service provided by NASA HEASARC .