- ID:
- ivo://CDS.VizieR/J/ApJ/850/34
- Title:
- 3000-25000{AA} spectroscopy of nearby M dwarfs
- Short Name:
- J/ApJ/850/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent studies of the stellar population in the solar neighborhood (<20pc) suggest that there are undetected white dwarfs (WDs) in multiple systems with main-sequence companions. Detecting these hidden stars and obtaining a more complete census of nearby WDs is important for our understanding of stellar and galactic evolution, as well as the study of explosive phenomena. In an attempt to uncover these hidden WDs, we present intermediate resolution spectroscopy over the wavelength range of 3000-25000{AA} of 101 nearby M dwarfs (dMs), observed with the Very Large Telescope X-Shooter spectrograph. For each star we search for a hot component superimposed on the dM spectrum. X-Shooter has excellent blue sensitivity and thus can reveal a faint hot WD despite the brightness of its red companion. Visual examination shows no clear evidence of a WD in any of the spectra. We place upper limits on the effective temperatures of WDs that may still be hiding by fitting dM templates to the spectra and modeling the WD spectra. On average our survey is sensitive to WDs hotter than about 5300K. This suggests that the frequency of WD companions of Teff>~5300K with separation of the order of <~50 au among the local dM population is <3% at the 95% confidence level.
« Previous |
1 - 10 of 1,273
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/213
- Title:
- Absolute reflectance & new calibration site of the Moon
- Short Name:
- J/AJ/155/213
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China's Chang'E-3 (CE-3) "Yutu" rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M^3^) on board the Chandrayaan-1, and the Chang'E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M^3^ and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.
- ID:
- ivo://CDS.VizieR/J/AJ/135/2245
- Title:
- Absolute spectrum of the Sun and Vega for 0.2-30um
- Short Name:
- J/AJ/135/2245
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24um band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method).
- ID:
- ivo://CDS.VizieR/J/AJ/161/285
- Title:
- Absorption & emission lines and RVel for vA 351
- Short Name:
- J/AJ/161/285
- Date:
- 08 Mar 2022
- Publisher:
- CDS
- Description:
- We extend results first announced by Franz et al., that identified vA351=H346 in the Hyades as a multiple star system containing a white dwarf. With Hubble Space Telescope Fine Guidance Sensor fringe tracking and scanning, and more recent speckle observations, all spanning 20.7years, we establish a parallax, relative orbit, and mass fraction for two components, with a period, P=2.70yr and total mass 2.1M{sun}. With ground-based radial velocities from the McDonald Observatory Otto Struve 2.1m Telescope Sandiford Spectrograph, and Center for Astrophysics Digital Speedometers, spanning 37 years, we find that component B consists of BC, two M-dwarf stars orbiting with a very short period (P_BC_=0.749days), having a mass ratio M_C_/M_B_=0.95. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher-mass component. The quadruple system consists of three M dwarfs (A, B, C) and one white dwarf (D). We determine individual M-dwarf masses M_A_=0.53{+/-}0.10M{sun}, M_B_=0.43{+/-}0.04M{sun}, and M_C_=0.41{+/-}0.04M{sun}. The white dwarf mass, 0.54{+/-}0.04M{sun}, comes from cooling models, an assumed Hyades age of 670Myr, and consistency with all previous and derived astrometric, photometric, and radial velocity results. Velocities from H{alpha} and HeI emission lines confirm the BC period derived from absorption lines, with similar (HeI) and higher (H{alpha}) velocity amplitudes. We ascribe the larger H{alpha} amplitude to emission from a region each component shadows from the other, depending on the line of sight.
- ID:
- ivo://CDS.VizieR/J/ApJS/239/19
- Title:
- Absorption lines in 21 Lyn A-type star
- Short Name:
- J/ApJS/239/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of absorption lines in the z', Y, and J bands that we identified in 21 Lyn, a slowly rotating A0.5V star. We detected 155 absorption features in the high-resolution (0.90-1.35um, R=28000) spectrum obtained with the WINERED spectrograph after the telluric absorption was carefully removed using a spectrum of a B-type star as a telluric standard. With a visual comparison with synthetic spectra, we compiled a catalog of 219 atomic lines for the 155 features, some of which are composed of multiple fine structure lines. The high-quality WINERED spectrum enabled us to detect a large number of weak lines down to ~1% in depth, which are identified for an A-type star for the first time. The catalog includes the lines of H, C, N, O, Mg, Al, Si, S, Ca, Fe, and Sr. These new lines are expected to be useful for spectral classification and chemical abundance analyses, while the line catalog is useful for observers who plan to use A-type stars as telluric standards because it is necessary to distinguish between stellar lines and telluric absorption lines in high-resolution spectra. ASCII versions of the spectra are available in the online version of the journal.
- ID:
- ivo://CDS.VizieR/J/ApJS/162/346
- Title:
- Abundance gradients in the Galaxy
- Short Name:
- J/ApJS/162/346
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Six HII regions at galactocentric distances of R=10-15kpc have been observed in the far-IR emission lines of [OIII] (52{mu}m, 88{mu}m), [NIII] (57{mu}m), and [SIII] (19{mu}m) using the Kuiper Airborne Observatory. These observations have been combined with Very Large Array radio continuum observations of these sources to determine the abundances of O++, N++, and S++ relative to hydrogen. In addition, eight of the most recent sets of measurements of ionic line strengths in HII regions have been reanalyzed in order to attempt to reconcile differences in optical versus far-IR abundance determinations. We have in total 168 sets of observations of 117 HII regions in our analysis.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/4
- Title:
- Abundances and ages of stars in the Milky Way bulge
- Short Name:
- J/ApJ/900/4
- Date:
- 14 Mar 2022 07:37:10
- Publisher:
- CDS
- Description:
- The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within R_GAL_<3.5kpc. We focus on fields with b<12{deg}, and out to longitudes of l<15{deg}. We see that stars in the bulge are about twice as old ({tau}=8Gyr), on average, compared to those in the solar neighborhood ({tau}=4Gyr), with a larger dispersion in [Fe/H] (~0.38 compared to 0.23dex). This age gradient comes primarily from the low-{alpha} stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ({sigma}[Fe/H]~0.4dex) and line-of- sight velocity ({sigma}vr~90km/s), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b=8{deg}, but not at b=12{deg}. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/146
- Title:
- Abundances in 2 metal-poor GCs, M53 & NGC5053
- Short Name:
- J/ApJ/900/146
- Date:
- 02 Feb 2022 13:00:59
- Publisher:
- CDS
- Description:
- We search for extratidal stars around two metal-poor Galactic globular clusters, M53 and NGC 5053, using the near-infrared APOGEE spectra. Applying the t-distributed stochastic neighbor embedding (t-SNE) algorithm on the chemical abundances and radial velocities results in identification of two isolated stellar groups composed of cluster member stars in the t-SNE projection plane. With additional selection criteria of radial velocity, location in the color-magnitude diagram, and abundances from a manual chemical analysis, we find a total of 73 cluster member candidates; seven extratidal stars are found beyond the tidal radii of the two clusters. The extratidal stars around the clusters tend to be located along the leading direction of the cluster proper motion, and the individual proper motion of these stars also seems to be compatible to those of clusters. Interestingly, we find that one extratidal star of NGC 5053 is located on the southern outskirts of M53, which is part of common stellar envelope by the tidal interaction between two clusters. We discuss the nature of this star in the context of the tidal interaction between two clusters. We find apparent Mg-Al anticorrelations with a clear gap and spread (~0.9dex) in Al abundances for both clusters, and a light Si abundance spread (~0.3dex) for NGC 5053. Since all extratidal stars have Mg-enhanced and Al-depleted features, they could be first-generation stars of two globular clusters. Our results support that M53 and NGC5053 originated in dwarf galaxies and are surrounded by extended stellar substructures of more numerous populations of clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/865/44
- Title:
- Abundances of evolved stars from IGRINS. I.
- Short Name:
- J/ApJ/865/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have derived elemental abundances of three field red horizontal branch stars using high-resolution (R~45000), high signal-to-noise ratio (S/N>~200) H- and K-band spectra obtained with the Immersion Grating Infrared Spectrograph (IGRINS). We have determined the abundances of 21 elements, including {alpha} (Mg, Si, Ca, S), odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Co, Ni), neutron-capture (Ce, Nd, Yb), CNO-group elements. S, P, and K are determined for the first time in these stars. H- and K-band spectra provide a substantial number of S I lines, which potentially can lead to a more robust exploration of the role of sulfur in the cosmochemical evolution of the Galaxy. We have also derived ^12^C/^13^C ratios from synthetic spectra of the first-overtone ^12^CO (2-0) and (3-1) and ^13^CO (2-0) lines near 23440{AA} and ^13^CO (3-1) lines at about 23730{AA}. Comparison of our results with the ones obtained from the optical region suggests that the IGRINS high-resolution H- and K-band spectra offer more internally self-consistent line abundances of the same species for several elements, especially the {alpha}-elements. This in turn provides more reliable abundances for the elements with analytical difficulties in the optical spectral range.
- ID:
- ivo://CDS.VizieR/J/ApJ/872/137
- Title:
- Abundances of red clump & RGB stars with APOGEE
- Short Name:
- J/ApJ/872/137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Internal mixing on the giant branch is an important process which affects the evolution of stars and the chemical evolution of the galaxy. While several mechanisms have been proposed to explain this mixing, better empirical constraints are necessary. Here, we use [C/N] abundances in 26097 evolved stars from the SDSS-IV/APOGEE-2 DR14 to trace mixing and extra mixing in old field giants with -1.7<[Fe/H]<0.1. We show that the APOGEE [C/N] ratios before any dredge-up occurs are metallicity dependent, but that the change in [C/N] at the first dredge-up is metallicity independent for stars above [Fe/H]~-1. We identify the position of the red giant branch (RGB) bump as a function of metallicity, note that a metallicity-dependent extra mixing episode takes place for low-metallicity stars ([Fe/H]{<}-0.4) 0.14dex in logg above the bump, and confirm that this extra mixing is stronger at low metallicity, reaching {Delta}[C/N]=0.58dex at [Fe/H]=-1.4. We show evidence for further extra mixing on the upper giant branch, well above the bump, among the stars with [Fe/H]{<}-1.0. This upper giant branch mixing is stronger in the more metal-poor stars, reaching 0.38 dex in [C/N] for each 1.0dex in logg. The APOGEE [C/N] ratios for red clump (RC) stars are significantly higher than for stars at the tip of the RGB, suggesting additional mixing processes occur during the helium flash or that unknown abundance zero points for C and N may exist among the RC sample. Finally, because of extra mixing, we note that current empirical calibrations between [C/N] ratios and ages cannot be naively extrapolated for use in low-metallicity stars specifically for those above the bump in the luminosity function.