- ID:
- ivo://CDS.VizieR/J/AJ/144/92
- Title:
- Times of maximum light for the SX Phe star XX Cyg
- Short Name:
- J/AJ/144/92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Time-series photometric observations were made for the SX Phoenicis star XX Cyg between 2007 and 2011 at the Xinglong Station of National Astronomical Observatories of China. With the light curves derived from the new observations, we do not detect any secondary maximum in the descending portion of the light curves of XX Cyg, as reported in some previous work. Frequency analysis of the light curves confirms a fundamental frequency f_0_=7.4148cycles/day and up to 19 harmonics, 11 of which are newly detected. However, no secondary mode of pulsation is detected from the light curves. The O-C diagram, produced from 46 newly determined times of maximum light combined with those derived from the literature, reveals a continuous period increase with the rate of (1/P)(dP/dt)=1.19(13)x10^-8^/yr. Theoretical rates of period change due to the stellar evolution were calculated with a modeling code. The result shows that the observed rate of period change is fully consistent with period change caused by evolutionary behavior predicted by standard theoretical models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/150/183
- Title:
- Times of minima for 18 LMC eclipsing binaries
- Short Name:
- J/AJ/150/183
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O - C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of these systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M_{sun}_ for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.
- ID:
- ivo://CDS.VizieR/J/other/IBVS/5502
- Title:
- Times of minima of eclipsing binaries in 2003
- Short Name:
- J/other/IBVS/550
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Times of minima for a number of neglected eclipsing binaries are presented.
- ID:
- ivo://CDS.VizieR/J/MNRAS/428/678
- Title:
- Transiting exoplanet TrES-3b CCD UBVR photometry
- Short Name:
- J/MNRAS/428/678
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We observed nine primary transits of the hot Jpiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8G and 30G. Using these magnetic field values and an assumed B* of 100G, the Vidotto et al. method predicts a timing difference of 5-11min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7mmag. However, we determined an upper limit of TrES-3b's magnetic field strength to range between 0.013 and 1.3G (for a 1-100G magnetic field strength range for the host star, TrES-3) using a timing difference of 138s derived from the Nyquist-Shannon sampling theorem. To verify our results of an abnormally small magnetic field strength for TrES-3b and to further constrain the techniques of Vidotto et al., we propose future observations of TrES-3b with other platforms capable of achieving a shorter near-UV cadence. We also present a refinement of the physical parameters of TrES-3b, an updated ephemeris and its first published near-UV light curve. We find that the near-UV planetary radius of Rp=1.386+0.248-0.144RJup is consistent with the planet's optical radius.
- ID:
- ivo://CDS.VizieR/J/AJ/143/95
- Title:
- Transit light curves of HAT-P-12
- Short Name:
- J/AJ/143/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new photometric data of the transiting planet HAT-P-12b observed in 2011. Our three transit curves are modeled using the JKTEBOP code and adopting the quadratic limb-darkening law. Including our measurements, 18 transit times spanning about 4.2yr were used to determine the improved ephemeris with a transit epoch of 2454187.85560+/-0.00011BJD and an orbital period of 3.21305961+/-0.00000035days. The physical properties of the star-planet system are computed using empirical calibrations from eclipsing binary stars and stellar evolutionary models, combined with both our transit parameters and previously known spectroscopic results. We found that the absolute dimensions of the host star are M_A_=0.73+/-0.02M{sun}, R_A_=0.70+/-0.01R_{sun}_, log g_A_=4.61+/-0.02, p_A_=2.10+/-0.09{rho}{sun}, and L_A_=0.21+/-0.01L_{sun}_. The planetary companion has M_b_=0.21+/-0.01M_{Jup}_, R_b_=0.94+/-0.01R_{Jup}_, log g_b_=2.77+/-0.02, {rho}_b_=0.24+/-0.01{rho}_{Jup}_, and T_eq_=960+/-14K. Our results agree well with standard models of irradiated gas giants with a core mass of 11.3M_{earth}_.
- ID:
- ivo://CDS.VizieR/J/A+A/523/A84
- Title:
- Transit light curves of HAT-P-13b
- Short Name:
- J/A+A/523/A84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A possible transit of HAT-P-13c has been predicted to occur on 2010 April 28. Here we report on the results of a multi-site campaign that has been organised to detect the event. CCD photometric observations have been carried out at five observatories in five countries. We reached 30% time coverage in a 5 days interval centered on the suspected transit of HAT-P-13c. Two transits of HAT-P-13b were also observed. No transit of HAT-P-13c has been detected while the campaign was on. By a numerical experiment with 10^5^ model systems we conclude that HAT-P-13c is not a transiting exoplanet with a significance level from 65% to 72%, depending on the planet parameters and the prior assumptions. We present two times of transit of HAT-P-13b ocurring at BJD 2455141.5522+/-0.0010 and BJD 2455249.4508+/-0.0020. The TTV of HAT-P-13b is consistent with zero within 0.001 days. The refined orbital period of HAT-P-13b is 2.916293+/-0.000010 days.
- ID:
- ivo://CDS.VizieR/J/A+A/535/A7
- Title:
- Transit light curves of WASP-10 b
- Short Name:
- J/A+A/535/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The WASP-10 planetary system is intriguing because different values of radius have been reported for its transiting exoplanet. The host star exhibits activity in terms of photometric variability, which is caused by the rotational modulation of the spots. Moreover, a periodic modulation has been discovered in transit timing of WASP-10 b, which could be a sign of an additional body perturbing the orbital motion of the transiting planet. We attempt to refine the physical parameters of the system, in particular the planetary radius, which is crucial for studying the internal structure of the transiting planet. We also determine new mid-transit times to confirm or refute observed anomalies in transit timing. We acquired high-precision light curves for four transits of WASP-10 b in 2010. Assuming various limb-darkening laws, we generated best-fit models and redetermined parameters of the system. The prayer-bead method and Monte Carlo simulations were used to derive error estimates. Three transit light curves exhibit signatures of the occultations of dark spots by the planet during its passage across the stellar disk. The influence of stellar activity on transit depth is taken into account while determining system parameters. The radius of WASP-10 b is found to be no greater than 1.03^+0.07^_-0.03_ Jupiter radii, a value significantly smaller than most previous studies indicate. We calculate interior structure models of the planet, assuming a two-layer structure with one homogeneous envelope atop a rock core. The high value of the WASP-10 b's mean density allows one to consider the planet's internal structure including 270 to 450 Earth masses of heavy elements. Our new mid-transit times confirm that transit timing cannot be explained by a constant period if all literature data points are considered. They are consistent with the ephemeris assuming a periodic variation of transit timing. We show that possible starspot features affecting the transit's ingress or egress cannot reproduce variations in transit timing at the observed amplitude.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A117
- Title:
- Transit search in the V1400 Cen system
- Short Name:
- J/A+A/652/A117
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- In 2007, the young star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a complex series of deep eclipses over 56 days. This was attributed to the transit of a ring system filling a large fraction of the Hill sphere of an unseen substellar companion. Subsequent photometric monitoring has not found any other deep transits from this candidate ring system, but if there are more substellar companions and if they are coplanar with the potential ring system, there is a chance that they will transit the star as well. This young star is active, and the light curves show a 5% modulation in amplitude with a dominant rotation period of 3.2 days due to starspots rotating into and out of view. We model and remove the rotational modulation of the J1407 light curve and search for additional transit signatures of substellar companions orbiting around J1407. We combine the photometry of J1407 from several observatories, spanning a 19 year baseline. We remove the rotational modulation by modeling the variability as a periodic signal, whose periodicity changes slowly with time over several years due to the activity cycle of the star. A transit least squares (TLS) analysis is used to search for any periodic transiting signals within the cleaned light curve. We identify an activity cycle of J1407 with a period of 5.4yr. A TLS search does not find any plausible periodic eclipses in the light curve, from 1.2% amplitude at 5 days up to 1.9% at 20 days. This sensitivity is confirmed by injecting artificial transits into the light curve and determining the recovery fraction as a function of transit depth and orbital period. J1407 is confirmed as a young active star with an activity cycle consistent with a rapidly rotating solar mass star. With the rotational modulation removed, the TLS analysis reaches down to planetary mass radii for young exoplanets, ruling out transiting companions with radii larger than about 1R_Jup_.
- ID:
- ivo://CDS.VizieR/J/A+A/577/A109
- Title:
- Transit times of Qatar-1b
- Short Name:
- J/A+A/577/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.
- ID:
- ivo://CDS.VizieR/J/A+A/590/A100
- Title:
- Transmission spectroscopy of HAT-P-32b
- Short Name:
- J/A+A/590/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We obtained low-resolution, multi-object spectra of the planet host star HAT-P-32 and multiple comparison stars during a transit event of HAT-P-32b. The spectral flux was binned in 62 narrow channels from 3300 to 10000{AA} and used to create differential photometric light curves. These light curves were analysed for a wavelength dependence of the effective planetary radius.