- ID:
- ivo://CDS.VizieR/J/AJ/157/245
- Title:
- High-precision radial velocities for HD 221416
- Short Name:
- J/AJ/157/245
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V=8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 {mu}Hz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R_*_=2.943+/-0.064 R_{sun}_), mass (M_*_=1.212+/-0.074 M_{sun}_), and age (4.9+/-1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (R_p_=9.17+/-0.33 R_{Earth}_) with an orbital period of ~14.3 days, irradiance of F=343+/-24 F_{Earth}_, and moderate mass (M_p_=60.5+/-5.7 M_{Earth}_) and density ({rho}_p_=0.431+/-0.062 g/cm^3^). The properties of HD 221416 b show that the host-star metallicity-planet mass correlation found in sub-Saturns (4-8 R_{Earth}_) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ~15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/197
- Title:
- HIRES radial velocities of HD9446, HD43691 & HD179079
- Short Name:
- J/AJ/159/197
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transit Ephemeris Refinement and Monitoring Survey is a project that aims to detect transits of intermediate-long period planets by refining orbital parameters of the known radial velocity planets using additional data from ground-based telescopes, calculating a revised transit ephemeris for the planet, then monitoring the planet host star during the predicted transit window. Here we present the results from three systems that had high probabilities of transiting planets: HD9446b and c, HD43691b, and HD179079b. We provide new radial velocity (RV) measurements that are then used to improve the orbital solution for the known planets. We search the RV data for indications of additional planets in orbit and find that HD9446 shows a strong linear trend of 4.8{sigma}. Using the newly refined planet orbital solutions, which include a new best-fit solution for the orbital period of HD9446c, and an improved transit ephemerides, we found no evidence of transiting planets in the photometry for each system. Transits of HD9446b can be ruled out completely and transits HD9446c and HD43691b can be ruled out for impact parameters up to b=0.5778 and b=0.898, respectively, due to gaps in the photometry. A transit of HD179079b cannot be ruled out, however, due to the relatively small size of this planet compared to the large star and thus low signal to noise. We determine properties of the three host stars through spectroscopic analysis and find through photometric analysis that HD9446 exhibits periodic variability.
- ID:
- ivo://CDS.VizieR/J/AJ/162/89
- Title:
- HIRES radial velocity follow up for Kepler-129
- Short Name:
- J/AJ/162/89
- Date:
- 14 Mar 2022 06:24:52
- Publisher:
- CDS
- Description:
- We present the discovery of Kepler-129d (P_d_=7.2_-0.3_^+0.4^yr, m_sini_d__=8.3_-0.7_^+1.1^M_Jup_, e_d_=0.15_-0.05_^+0.07^) based on six years of radial-velocity observations from Keck/HIRES. Kepler-129 also hosts two transiting sub-Neptunes: Kepler-129b (P_b_= 15.79days, r_b_=2.40{+/-}0.04R{Earth}) and Kepler-129c (P_c_=82.20days, r_c_=2.52{+/-}0.07R{Earth}) for which we measure masses of m_b_<20M{Earth} and m_c_=43_-12_^+13^M{Earth}. Kepler-129 is a hierarchical system consisting of two tightly packed inner planets and a massive external companion. In such a system, two inner planets precess around the orbital normal of the outer companion, causing their inclinations to oscillate with time. Based on an asteroseismic analysis of Kepler data, we find tentative evidence that Kepler-129b and c are misaligned with stellar spin axis by >~38{deg}, which could be torqued by Kepler-129 d if it is inclined by >~19{deg} relative to inner planets. Using N-body simulations, we provide additional constraints on the mutual inclination between Kepler-129d and inner planets by estimating the fraction of time during which two inner planets both transit. The probability that two planets both transit decreases as their misalignment with Kepler-129d increases. We also find a more massive Kepler-129c enables the two inner planets to become strongly coupled and more resistant to perturbations from Kepler-129d. The unusually high mass of Kepler-129c provides a valuable benchmark for both planetary dynamics and interior structure, since the best-fit mass is consistent with this 2.5R{Earth} planet having a rocky surface.
- ID:
- ivo://CDS.VizieR/J/AJ/157/145
- Title:
- HIRES RVs of three compact, multiplanet systems
- Short Name:
- J/AJ/157/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Understanding the relationship between long-period giant planets and multiple smaller short-period planets is critical for formulating a complete picture of planet formation. This work characterizes three such systems. We present Kepler-65, a system with an eccentric (e=0.28+/-0.07) giant planet companion discovered via radial velocities (RVs) exterior to a compact, multiply transiting system of sub-Neptune planets. We also use precision RVs to improve mass and radius constraints on two other systems with similar architectures, Kepler-25 and Kepler-68. In Kepler-68 we propose a second exterior giant planet candidate. Finally, we consider the implications of these systems for planet formation models, particularly that the moderate eccentricity in Kepler-65's exterior giant planet did not disrupt its inner system.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A20
- Title:
- HITEP. II. Transiting exoplanets imaging
- Short Name:
- J/A+A/610/A20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the second part of a high resolution imaging survey of hot Jupiter host stars. We search for binary companions to known transiting exoplanet host stars, in order to determine the multiplicity properties of hot Jupiter host stars. We also search for and characterise unassociated stars along the line of sight, allowing photometric and spectroscopic observations of the planetary system to be corrected for contaminating light.
- ID:
- ivo://CDS.VizieR/J/A+A/622/A81
- Title:
- 15 hot Jupiter exoplanets light curves
- Short Name:
- J/A+A/622/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 hot Jupiter exoplanets with the largest timing uncertainties. We collected 120 professional and amateur transit light curves of the targets of interest, observed with a range of telescopes of 0.3m-2.2m, and analyzed them along with the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5h, and for HAT-P-29b and HAT-P-31b the deviation amounted to about 2h and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6-min in the year 2018 and less than 13-min until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A180
- Title:
- hot massive Jupiter NGTS-13b photometry
- Short Name:
- J/A+A/647/A180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V=12.7 host star is likely in the subgiant evolutionary phase with logg_*_=4.04+/-0.05, Teff=5819+/-73K, M_*_=1.30^+0.11^_-0.18_M_{sun}_, and R_*_=1.79+/-0.06R_{sun}_. NGTS detected a transiting planet with a period of P=4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of R_P_=1.142+/-0.046R_Jup_, mass of M_P_=4.84+/-0.44M_Jup_ and eccentricity e=0.086+/-0.034. Some previous studies suggest that ~4M_Jup_ may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4M_Jup_ making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H]=0.25+/-0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars.
- ID:
- ivo://CDS.VizieR/J/AJ/160/259
- Title:
- HPF RVs and TESS photometry of TOI-1266
- Short Name:
- J/AJ/160/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the validation of two planets orbiting the nearby (36pc) M2 dwarf TOI-1266 observed by the TESS mission. This system is one of a few M dwarf multiplanet systems with close-in planets where the inner planet is substantially larger than the outer planet. The inner planet is sub-Neptune-sized (R=2.46{+/-}0.08R{Earth}) with an orbital period of 10.9days, while the outer planet has a radius of 1.67_-0.11_^+0.09^R{Earth} and resides in the exoplanet radius valley-the transition region between rocky and gaseous planets. With an orbital period of 18.8days, the outer planet receives an insolation flux of 2.4 times that of Earth, similar to the insolation of Venus. Using precision near-infrared radial velocities with the Habitable-zone Planet Finder Spectrograph, we place upper mass limits of 15.9 and 6.4M{Earth} at 95% confidence for the inner and outer planet, respectively. A more precise mass constraint of both planets, achievable with current radial velocity instruments given the host star brightness (V=12.9, J=9.7), will yield further insights into the dominant processes sculpting the exoplanet radius valley.
- ID:
- ivo://CDS.VizieR/J/A+A/623/L11
- Title:
- HR8799e K-band spectrum
- Short Name:
- J/A+A/623/L11
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- To date, infrared interferometry at best achieved contrast ratios of a few times 10^-4^ on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR 8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR 8799 e planet situated at 390mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100{mu}as. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of ~5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150+/-50K and a surface gravity of 10^4.3+/-0.3^cm.s^2^. This corresponds to a radius of 1.17_-0.11_^+0.13^R_Jup_ and a mass of 10_-4_^+7^M_Jup_, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.
- ID:
- ivo://CDS.VizieR/J/AJ/161/51
- Title:
- HST spectral light curve of HAT-P-41
- Short Name:
- J/AJ/161/51
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive analysis of the 0.3-5{mu}m transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program, and we combine those data with warm Spitzer transit observations. We extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29-0.93{mu}m) for the first time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day-night terminator. Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich atmosphere for almost all model assumptions (most likely O/H ratio of log_10_Z/Z{odot}=1.46_-0.68_^+0.53^ and log_10_Z/Z{odot}=2.33_-0.25_^+0.23^, respectively); this is driven by a 4.9{sigma} detection of H_2_O as well as evidence of gas absorption in the optical (>2.7{sigma} detection) due to Na, AlO, and/or VO/TiO, though no individual species is strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity (log_10_Z/Z{odot}<1.7) favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity and high inflation make HAT-P-41b an interesting test case for planet formation theories.