- ID:
- ivo://CDS.VizieR/J/AJ/155/255
- Title:
- Radial velocity and activity measurements of HAT-P-11
- Short Name:
- J/AJ/155/255
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the star's spin-one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/High Resolution Echelle Spectrometer. HAT-P-11c is similar to Jupiter in its mass (M_P_sin i=1.6+/-0.1 M_J_) and orbital period (P=9.3_-0.5_^+1.0^ year), but has a much more eccentric orbit (e=0.60+/-0.03). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of ~7 m/s, consistent with other active K dwarfs, but significantly smaller than the 31 m/s reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11b's misaligned orbit, finding that planet-planet Kozai interactions cannot tilt planet b's orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11b's high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/157/141
- Title:
- Radial velocity and light curves of WASP-190
- Short Name:
- J/AJ/157/141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of WASP-190b, an exoplanet on a 5.37 day orbit around a mildly evolved F6 IV-V star with V=11.7, T_eff_=6400+/-100 K, M_*_=1.35+/-0.05 M_{sun}_, and R_*_=1.6+/-0.1 R_{sun}_. The planet has a radius of R_P_=1.15+/-0.09 R_Jup_ and a mass of M_P_=1.0+/-0.1 M_Jup_, making it a mildly inflated hot Jupiter. It is the first hot Jupiter confirmed via Doppler tomography with an orbital period of >5 days. The orbit is also marginally misaligned with respect to the stellar rotation, with {lambda}=21{deg}+/-6{deg} measured using Doppler tomography.
- ID:
- ivo://CDS.VizieR/J/AJ/155/24
- Title:
- Radial velocity and planet detectability in alpha Cen
- Short Name:
- J/AJ/155/24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use more than a decade of radial-velocity measurements for {alpha} Cen A, B, and Proxima Centauri from the High Accuracy Radial Velocity Planet Searcher, CTIO High Resolution Spectrograph, and the Ultraviolet and Visual Echelle Spectrograph to identify the Msin(i), and orbital periods of planets that could have been detected if they existed. At each point in a mass-period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about Msin(i) of 53 M_{Earth}_, for {alpha} Cen A, 8.4 M_{Earth}_, for {alpha} Cen B, and 0.47 M_{Earth}_, for Proxima Centauri. Additionally, we examine the impact of systematic errors, or "red noise" in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the {alpha} Centauri stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the {alpha} Cen system may be compositionally similar to our terrestrial planets. Although the small projected separation of {alpha} Cen A and B currently hampers extreme-precision radial-velocity measurements, the angular separation is now increasing. By 2019, {alpha} Cen A and B will be ideal targets for renewed Doppler planet surveys.
- ID:
- ivo://CDS.VizieR/J/AJ/156/82
- Title:
- Radial velocity characterization of TESS planets
- Short Name:
- J/AJ/156/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) will conduct a two-year wide-field survey searching for transiting planets around bright stars. Many TESS discoveries will be amenable to mass characterization via ground-based radial velocity measurements with any of a growing suite of existing and anticipated velocimeters in the optical and near-infrared. In this study we present an analytical formalism to compute the number of radial velocity (RV) measurements - and hence the total observing time-required to characterize RV planet masses with the inclusion of either a white or correlated noise activity model. We use our model to calculate the total observing time required to measure all TESS planet masses from the expected TESS planet yield while relying on our current understanding of the targeted stars, stellar activity, and populations of unseen planets that inform the expected RV precision. We also present specialized calculations applicable to a variety of interesting subsets of TESS planets including the characterization of 50 planets smaller than 4 Earth radii, which is expected to take as little as 60 nights of observation. However, the efficient RV characterization of such planets requires a priori knowledge of the "best" targets, which we argue can be identified prior to the conclusion of the TESS planet search based on our calculations. Our results highlight the comparable performance of optical and near-IR spectrographs for most planet populations except for Earths and temperate TESS planets, which are more efficiently characterized in the near-IR. Lastly, we present an online tool to the community to compute the total observing times required to detect any transiting planet using a user-defined spectrograph (RVFC; http://maestria.astro.umontreal.ca/rvfc).
- ID:
- ivo://CDS.VizieR/J/A+A/647/A160
- Title:
- Radial velocity data of epsilon Cyg
- Short Name:
- J/A+A/647/A160
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Hamilton Echelle Spectrograph at Lick Observatory, we have obtained precise radial velocities of a sample of 373 G- and K-giant stars from 1999 until 2012, leading to the discovery of several single and multiple planetary systems. The radial velocities of the long-period (~53 years) spectroscopic binary epsilon Cyg (HIP 102488) are found to exhibit additional variations with a much shorter period (~291 days). This signature is not perfectly regular, as its period and amplitude seem to change over time. We intend to improve the orbital solution of the epsilon Cyg system, and attempt to identify the cause of the nearly periodic shorter period variations, which might be due to an additional substellar companion. We use precise radial velocity measurements of the K-giant star epsilon Cyg from Lick Observatory, in combination with a large set of RVs collected more recently with the SONG telescope, as well as archival data sets.
- ID:
- ivo://CDS.VizieR/J/AJ/161/283
- Title:
- Radial velocity estimates of 4 stars with IGRINS
- Short Name:
- J/AJ/161/283
- Date:
- 08 Mar 2022
- Publisher:
- CDS
- Description:
- Application of the radial velocity (RV) technique in the near-infrared is valuable because of the diminished impact of stellar activity at longer wavelengths, making it particularly advantageous for the study of late-type stars but also for solar-type objects. In this paper, we present the IGRINS RV open-source python pipeline for computing infrared RV measurements from reduced spectra taken with IGRINS, an R~{lambda}/{Delta}{lambda}~45000 spectrograph with simultaneous coverage of the H-band (1.49-1.80{mu}m) and K-band (1.96-2.46{mu}m). Using a modified forward-modeling technique, we construct high-resolution telluric templates from A0 standard observations on a nightly basis to provide a source of common-path wavelength calibration while mitigating the need to mask or correct for telluric absorption. Telluric standard observations are also used to model the variations in instrumental resolution across the detector, including a yearlong period when the K-band was defocused. Without any additional instrument hardware, such as a gas cell or laser frequency comb, we are able to achieve precisions of 26.8m/s in the K-band and 31.1m/s in the H-band for narrow-line hosts. These precisions are empirically determined by a monitoring campaign of two RV standard stars, as well as the successful retrieval of planet-induced RV signals for both HD189733 and {tau}BooA; furthermore, our results affirm the presence of the Rossiter-McLaughlin effect for HD189733. The IGRINS RV pipeline extends another important science capability to IGRINS, with publicly available software designed for widespread use.
- ID:
- ivo://CDS.VizieR/J/AJ/157/33
- Title:
- Radial velocity exploration of {epsilon} Eridani
- Short Name:
- J/AJ/157/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the most sensitive direct imaging and radial velocity (RV) exploration of {epsilon} Eridani to date. {epsilon} Eridani is an adolescent planetary system, reminiscent of the early solar system. It is surrounded by a prominent and complex debris disk that is likely stirred by one or several gas giant exoplanets. The discovery of the RV signature of a giant exoplanet was announced 15 yr ago, but has met with scrutiny due to possible confusion with stellar noise. We confirm the planet with a new compilation and analysis of precise RV data spanning 30 yr, and combine it with upper limits from our direct imaging search, the most sensitive ever performed. The deep images were taken in the Ms band (4.7 {mu}m) with the vortex coronagraph recently installed in W.M. Keck Observatory's infrared camera NIRC2, which opens a sensitive window for planet searches around nearby adolescent systems. The RV data and direct imaging upper limit maps were combined in an innovative joint Bayesian analysis, providing new constraints on the mass and orbital parameters of the elusive planet. {epsilon} Eridani b has a mass of 0.78_-0.12_^+0.38^ M_Jup_ and is orbiting {epsilon} Eridani at about 3.48+/-0.02 au with a period of 7.37+/-0.07 yr. The eccentricity of {epsilon} Eridani b's orbit is 0.07_-0.05_^+0.06^, an order of magnitude smaller than early estimates and consistent with a circular orbit. We discuss our findings from the standpoint of planet-disk interactions and prospects for future detection and characterization with the James Webb Space Telescope.
- ID:
- ivo://CDS.VizieR/J/AJ/162/61
- Title:
- Radial velocity follow up of Barnard's star with HPF
- Short Name:
- J/AJ/162/61
- Date:
- 14 Mar 2022 07:00:45
- Publisher:
- CDS
- Description:
- Barnard's star is among the most studied stars given its proximity to the Sun. It is often considered the radial velocity (RV) standard for fully convective stars due to its RV stability and equatorial decl. Recently, an M_sini_=3.3M{Earth} super-Earth planet candidate with a 233day orbital period was announced by Ribas et al. New observations from the near-infrared Habitable-zone Planet Finder (HPF) Doppler spectrometer do not show this planetary signal. We ran a suite of experiments on both the original data and a combined original + HPF data set. These experiments include model comparisons, periodogram analyses, and sampling sensitivity, all of which show the signal at the proposed period of 233days is transitory in nature. The power in the signal is largely contained within 211 RVs that were taken within a 1000 day span of observing. Our preferred model of the system is one that features stellar activity without a planet. We propose that the candidate planetary signal is an alias of the 145day rotation period. This result highlights the challenge of analyzing long-term, quasi-periodic activity signals over multiyear and multi-instrument observing campaigns.
- ID:
- ivo://CDS.VizieR/J/AJ/154/123
- Title:
- Radial velocity follow-up of the HD 3167 system
- Short Name:
- J/AJ/154/123
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- HD 3167 is a bright (V=8.9 mag) K0 V star observed by NASA's K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 M_{Earth}_, a radius of 1.574+/-0.054 R_{Earth}_, and a mean density of 8.00_-0.98_^+1.10^ g/cm^3^, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33_-1.85_^+1.79^ M_{Earth}_ and a radius of 2.740_-0.100_^+0.106^ R_{Earth}_, yielding a mean density of 2.21_-0.53_^+0.56^ g/cm^3^, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (~350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
- ID:
- ivo://CDS.VizieR/J/AJ/159/235
- Title:
- Radial Velocity jitters in ~600 planet host stars
- Short Name:
- J/AJ/159/235
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radial velocity (RV) detection of planets is hampered by astrophysical processes on the surfaces of stars that induce a stochastic signal, or "jitter," which can drown out or even mimic planetary signals. Here, we empirically and carefully measure the RV jitter of more than 600 stars from the California Planet Search sample on a star by star basis. As part of this process, we explore the activity-RV correlation of stellar cycles and include appendices listing every ostensibly companion-induced signal we removed and every activity cycle we noted. We then use precise stellar properties from Brewer+, 2017ApJS..230...12B to separate the sample into bins of stellar mass and examine trends with activity and with evolutionary state. We find that RV jitter tracks stellar evolution and that in general, stars evolve through different stages of RV jitter: the jitter in younger stars is driven by magnetic activity, while the jitter in older stars is convectively driven and dominated by granulation and oscillations. We identify the "jitter minimum"-where activity-driven and convectively driven jitter have similar amplitudes-for stars between 0.7 and 1.7M{sun} and find that more-massive stars reach this jitter minimum later in their lifetime, in the subgiant or even giant phases. Finally, we comment on how these results can inform future RV efforts, from prioritization of follow-up targets from transit surveys like the Transiting Exoplanet Survey Satellite (TESS) to target selection of future RV surveys.