- ID:
- ivo://CDS.VizieR/J/AJ/156/64
- Title:
- RV measurements for 6 K giants in the SENS program
- Short Name:
- J/AJ/156/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of long-period radial velocity (RV) variations in six intermediate-mass K-giant stars using precise RV measurements. These discoveries are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey being conducted at the Bohyunsan Optical Astronomy Observatory. The nature of the RV variations was investigated by looking for photometric and line shape variations. We can find no variability with the RV period in these quantities and conclude that RV variations are most likely due to unseen sub-stellar companions. Orbital solutions for the six stars yield orbital periods in the range 418-1065 days and minimum masses in the range 1.9-8.5 M_J_. These properties are typical on planets around intermediate-mass stars. Our SENS survey so far has about an 8% confirmed planet occurrence rate, and it will provide better statistics on planets around giant stars when the survey is completed.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/158/165
- Title:
- RV observations & activity indicators for Kepler-538b
- Short Name:
- J/AJ/158/165
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Although several thousands of exoplanets have now been detected and characterized, observational biases have led to a paucity of long-period, low-mass exoplanets with measured masses and a corresponding lag in our understanding of such planets. In this paper we report the mass estimation and characterization of the long-period exoplanet Kepler-538b. This planet orbits a Sun-like star (V=11.27) with M_*_=0.892_-0.035_^+0.051^ M_{sun}_ and R_*_=0.8717_-0.0061_^+0.0064^ R_{sun}_. Kepler-538b is a 2.215_-0.034_^+0.040^ R_{Earth}_ sub-Neptune with a period of P=81.73778+/-0.00013 days. It is the only known planet in the system. We collected radial velocity (RV) observations with the High Resolution Echelle Spectrometer (HIRES) on Keck I and High Accuracy Radial velocity Planet Searcher in North hemisphere (HARPS-N) on the Telescopio Nazionale Galileo (TNG). We characterized stellar activity by a Gaussian process with a quasi-periodic kernel applied to our RV and cross-correlation function FWHM observations. By simultaneously modeling Kepler photometry, RV, and FWHM observations, we found a semi-amplitude of K=1.68_-0.38_^+0.39^ m/s and a planet mass of M_p_=10.6_-2.4_^+2.5^ M_{Earth}_. Kepler-538b is the smallest planet beyond P=50 days with an RV mass measurement. The planet likely consists of a significant fraction of ices (dominated by water ice), in addition to rocks/metals, and a small amount of gas. Sophisticated modeling techniques such as those used in this paper, combined with future spectrographs with ultra high-precision and stability will be vital for yielding more mass measurements in this poorly understood exoplanet regime. This in turn will improve our understanding of the relationship between planet composition and insolation flux and how the rocky to gaseous transition depends on planetary equilibrium temperature.
- ID:
- ivo://CDS.VizieR/J/AJ/157/55
- Title:
- RVs and light curves for HATS-60-HATS-69
- Short Name:
- J/AJ/157/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 10 transiting extrasolar planets by the HATSouth survey. The planets range in mass from the super-Neptune HATS-62b, with M_p_<0.179 M_J_, to the super-Jupiter HATS-66b, with M_p_=5.33 M_J_, and in size from the Saturn HATS-69b, with R_p_=0.94 R_J_, to the inflated Jupiter HATS-67b, with R_p_=1.69 R_J_. The planets have orbital periods between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts are dwarf stars with masses ranging from 0.89 M_{sun}_ (HATS-69) to 1.56 M_{sun}_ (HATS-64) and have apparent magnitudes between V=12.276+/-0.020 mag (HATS-68) and V=14.095+/-0.030 mag (HATS-66). The super-Neptune HATS-62b is the least massive planet discovered to date with a radius larger than Jupiter. Based largely on the Gaia DR2 distances and broadband photometry, we identify three systems (HATS-62, HATS-64, and HATS-65) as having possible unresolved binary star companions. We discuss in detail our methods for incorporating the Gaia DR2 observations into our modeling of the system parameters and into our blend analysis procedures.
- ID:
- ivo://CDS.VizieR/J/AJ/159/145
- Title:
- RVs and opt. photometry of the host star TOI-677
- Short Name:
- J/AJ/159/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of TOI-677b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677b has a mass of M_p_=1.236_-0.067_^+0.069^M_J_, a radius of R_P_=1.170{+/-}0.03R_J_, and orbits its bright host star (V=9.8mag) with an orbital period of 11.23660{+/-}0.00011d, on an eccentric orbit with e=0.435{+/-}0.024. The host star has a mass of M_*_=1.181{+/-}0.058M_{sun}_, a radius of R_*_=1.28_-0.03_^+0.03^R_{sun}_, an age of 2.92_-0.73_^+0.80^Gyr and solar metallicity, properties consistent with a main-sequence late-F star with T_eff_=6295{+/-}77K. We find evidence in the radial velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-677b system is a well-suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets.
- ID:
- ivo://CDS.VizieR/J/AJ/160/222
- Title:
- RVs and RI-photometry of HATS-37 and HATS-38
- Short Name:
- J/AJ/160/222
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099{+/-}0.042M_Jup_ (31.5{+/-}13.4M{Earth}) and a radius of 0.606{+/-}0.016R_Jup_, and is on a P=4.3315day orbit around a V=12.266{+/-}0.030mag, 0.843_-0.012_^+0.017^M{odot} star with a radius of 0.877_-0.012_^+0.019^R{odot}. We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654{+/-}0.033M{odot}. The planet HATS-38b has a mass of 0.074{+/-}0.011M_Jup_ (23.5{+/-}3.5M{Earth}) and a radius of 0.614{+/-}0.017R_Jup_, and is on a P=4.3750day orbit around a V=12.411{+/-}0.030mag, 0.890_-0.012_^+0.016^M{odot} star with a radius of 1.105{+/-}0.016 R{odot}. Both systems appear to be old, with isochrone-based ages of 11.46_-1.45_^+0.79^Gyr, and 11.89{+/-}0.60Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
- ID:
- ivo://CDS.VizieR/J/AJ/156/89
- Title:
- RVs & predicted transit-times for the K2-24 system
- Short Name:
- J/AJ/156/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While planets between the size of Uranus and Saturn are absent within the solar system, the star K2-24 hosts two such planets, K2-24b and c, with radii equal to 5.4 R_{Earth}_ and 7.5 R_{Earth}_, respectively. The two planets have orbital periods of 20.9 days and 42.4 days, residing only 1% outside the nominal 2:1 mean-motion resonance. In this work, we present results from a coordinated observing campaign to measure planet masses and eccentricities that combines radial velocity measurements from Keck/HIRES and transit-timing measurements from K2 and Spitzer. K2-24b and c have low, but nonzero, eccentricities of e_1_~e_2_~0.08. The low observed eccentricities provide clues to the formation and dynamical evolution of K2-24b and K2-24c, suggesting that they could be the result of stochastic gravitational interactions with a turbulent protoplanetary disk, among other mechanisms. K2-24b and c are 19.0_-2.1_^+2.2^ M_{Earth}_ and 15.4_-1.8_^+1.9^ M_{Earth}_, respectively; K2-24c is 20% less massive than K2-24b, despite being 40% larger. Their large sizes and low masses imply large envelope fractions, which we estimate at 26_-3_^+3^ % and 52_-3_^+5^ %. In particular, K2-24c's large envelope presents an intriguing challenge to the standard model of core-nucleated accretion that predicts the onset of runaway accretion when f_env_~50%.
- ID:
- ivo://CDS.VizieR/J/AJ/155/120
- Title:
- RV variability of the K-giant {gamma} Draconis
- Short Name:
- J/AJ/155/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present precise stellar radial velocity (RV) measurements of {gamma} Dra taken from 2003 to 2017. The data from 2003 to 2011 show coherent, long-lived variations with a period of 702 days. These variations are consistent with the presence of a planetary companion having m sin i=10.7 M_Jup_ whose orbital properties are typical for giant planets found around evolved stars. An analysis of the Hipparcos photometry, Ca II S-index measurements, and measurements of the spectral line shapes during this time show no variations with the RV of the planet, which seems to "confirm" the presence of the planet. However, RV measurements taken from 2011-2017 seem to refute this. From 2011-2013, the RV variations virtually disappear, only to return in 2014 but with a noticeable phase shift. The total RV variations are consistent either with amplitude variations on timescales of ~10.6 year, or the beating effect between two periods of 666 and 801 days. It seems unlikely that both these signals stem from a two-planet system. A simple dynamical analysis indicates that there is only a 1%-2% chance that the two-planet system is stable. Rather, we suggest that this multi-periodic behavior may represent a new form of stellar variability, possibly related to oscillatory convective modes. If such intrinsic stellar variability is common around K giant stars and is attributed to planetary companions, then the planet occurrence rate among these stars may be significantly lower than thought.
- ID:
- ivo://CDS.VizieR/J/AJ/162/259
- Title:
- Scaling K2. IV. Campaigns 1-8 & 10-18 planets sample
- Short Name:
- J/AJ/162/259
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We provide the first full K2 transiting exoplanet sample, using photometry from Campaigns 1-8 and 10-18, derived through an entirely automated procedure. This homogeneous planet candidate catalog is crucial to perform a robust demographic analysis of transiting exoplanets with K2. We identify 747 unique planet candidates and 57 multiplanet systems. Of these candidates, 366 have not been previously identified, including one resonant multiplanet system and one system with two short-period gas giants. By automating the construction of this list, measurements of sample biases (completeness and reliability) can be quantified. We carried out a light-curve-level injection/recovery test of artificial transit signals and found a maximum completeness of 61%, a consequence of the significant detrending required for K2 data analysis. Through this operation we attained measurements of the detection efficiency as a function of signal strength, enabling future population analysis using this sample. We assessed the reliability of our planet sample by testing our vetting software EDI-Vetter against inverted transit-free light curves. We estimate that 91% of our planet candidates are real astrophysical signals, increasing up to 94% when limited to the FGKM dwarf stellar population. We also constrain the contamination rate from background eclipsing binaries to less than 5%. The presented catalog, along with the completeness and reliability measurements, enable robust exoplanet demographic studies to be carried out across the fields observed by the K2 mission for the first time.
- ID:
- ivo://CDS.VizieR/J/ApJ/869/66
- Title:
- Search for extraterrestrial intelligence with ATA
- Short Name:
- J/ApJ/869/66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a novel radio autocorrelation search for extraterrestrial intelligence. For selected frequencies across the terrestrial microwave window (1-10GHz), observations were conducted at the Allen Telescope Array to identify artificial non-sinusoidal periodic signals with radio bandwidths greater than 4Hz, which are capable of carrying substantial messages with symbol rates from 4 to 10^6^Hz. Out of 243 observations, about half (101) were directed toward sources with known continuum flux >~1Jy over the sampled bandwidth (quasars, pulsars, supernova remnants, and masers), based on the hypothesis that they might harbor heretofore undiscovered natural or artificial repetitive, phase or frequency modulation. The rest of the observations were directed mostly toward exoplanet stars with no previously discovered continuum flux. No signals attributable to extraterrestrial technology were found in this study. We conclude that the maximum probability that future observations like the ones described here will reveal repetitively modulated emissions is less than 5% for continuum sources and exoplanets alike. The paper concludes by describing a new approach to expanding this survey to many more targets and much greater sensitivity using archived data from interferometers all over the world.
- ID:
- ivo://CDS.VizieR/J/AcA/70/181
- Title:
- Search for Planets in Hot Jupiter Systems
- Short Name:
- J/AcA/70/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Origins of giant planets on tight orbits, so called hot Jupiters, are a long-lasting question in the planetary formation and evolution theory. The answer seems to be hidden in architectures of those systems that remain only partially understood. Using multi-sector time-series photometry from the Transiting Exoplanet Survey Satellite, we searched for additional planets in the KELT-18, KELT-23, KELT-24, Qatar-8, WASP-62, WASP-100, WASP-119, and WASP-126 planetary systems using both the transit technique and transit timing method. Our homogeneous analysis has eliminated the presence of transiting companions down to the terrestrial-size regime in the KELT-23 and WASP-62 systems, and down to mini-Neptunes or Neptunes in the remaining ones. Transit timing analysis has revealed no sign of either long-term trends or periodic perturbations for all the studied hot Jupiters, including the WASP-126 b for which deviations from a Keplerian model were claimed in the literature. The loneliness of the planets of the sample speaks in favor of the high-eccentricity migration mechanism that probably brought them to their tight orbits observed nowadays. As a by-product of our study, the transit light curve parameters were redetermined with a substantial improvement of the precision for six systems. For KELT-24 b, a joint analysis allowed us to place a tighter constraint on its orbital eccentricity.