- ID:
- ivo://CDS.VizieR/J/AJ/160/214
- Title:
- 130 Stellar ages & planetary orbital properties
- Short Name:
- J/AJ/160/214
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many exoplanets have orbital characteristics quite different from those seen in our own solar system, including planets locked in orbital resonances and planets on orbits that are elliptical or highly inclined from their host star's spin axis. It is debated whether the wide variety in system architecture is primarily due to differences in formation conditions (nature) or due to evolution over time (nurture). Identifying trends between planetary and stellar properties, including stellar age, can help distinguish between these competing theories and offer insights as to how planets form and evolve. However, it can be challenging to determine whether observed trends between planetary properties and stellar age are driven by the age of the system- pointing to evolution over time being an important factor-or other parameters to which the age may be related, such as stellar mass or stellar temperature. The situation is complicated further by the possibilities of selection biases, small number statistics, uncertainties in stellar age, and orbital evolution timescales that are typically much shorter than the range of observed ages. Here, we develop a Bayesian statistical framework to assess the robustness of such observed correlations and to determine whether they are indeed due to evolutionary processes, are more likely to reflect different formation scenarios, or are merely coincidental. We apply this framework to reported trends between stellar age and 2:1 orbital resonances, spin-orbit misalignments, and hot Jupiters' orbital eccentricities. We find strong support for the nurture hypothesis only in the final case.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/66
- Title:
- Stroemgren photometric observations of GJ 436b
- Short Name:
- J/AJ/155/66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 {mu}m. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 {mu}m. The spectrum is indicative of moderate to high metallicity (~100-1000x solar), while moderate-metallicity scenarios (~100x solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 {mu}m in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.
- ID:
- ivo://CDS.VizieR/J/AJ/162/28
- Title:
- Studying of protoplanetary disks in SFRs with ALMA
- Short Name:
- J/AJ/162/28
- Date:
- 14 Mar 2022 06:54:01
- Publisher:
- CDS
- Description:
- Gaps in protoplanetary disks have long been hailed as signposts of planet formation. However, a direct link between exoplanets and disks remains hard to identify. We present a large sample study of ALMA disk surveys of nearby star-forming regions to disentangle this connection. All disks are classified as either structured (transition, ring, extended) or nonstructured (compact) disks. Although low-resolution observations may not identify large-scale substructure, we assume that an extended disk must contain substructure from a dust evolution argument. A comparison across ages reveals that structured disks retain high dust masses up to at least 10Myr, whereas the dust mass of compact, nonstructured disks decreases over time. This can be understood if the dust mass evolves primarily by radial drift, unless drift is prevented by pressure bumps. We identify a stellar mass dependence of the fraction of structured disks. We propose a scenario linking this dependence with that of giant exoplanet occurrence rates. We show that there are enough exoplanets to account for the observed disk structures if transitional disks are created by exoplanets more massive than Jupiter and ring disks by exoplanets more massive than Neptune, under the assumption that most of those planets eventually migrate inwards. On the other hand, the known anticorrelation between transiting super-Earths and stellar mass implies those planets must form in the disks without observed structure, consistent with formation through pebble accretion in drift-dominated disks. These findings support an evolutionary scenario where the early formation of giant planets determines the disk's dust evolution and its observational appearance.
- ID:
- ivo://CDS.VizieR/J/other/FrASS/8.624907
- Title:
- (Sub)Stellar companions of exoplanet hosts
- Short Name:
- J/other/FrASS/8.
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present the latest results of an ongoing multiplicity survey of exoplanet hosts, which was initiated at the Astrophysical Institute and University Observatory Jena, using data from the second data release of the ESA-Gaia mission. In this study the multiplicity of 289 targets was investigated, all located within a distance of about 500pc from the Sun. In total, 41 binary, and five hierarchical triple star systems with exoplanets were detected in the course of this project, yielding a multiplicity rate of the exoplanet hosts of about 16%. A total of 61 companions (47 stars, a white dwarf, and 13 brown dwarfs) were detected around the targets, whose equidistance and common proper motion with the exoplanet hosts were proven with their precise Gaia DR2 astrometry, which also agrees with the gravitational stability of most of these systems. The detected companions exhibit masses from about 0.016 up to 1.66M_{sun}_ and projected separations in the range between about 52 and 9555au.
- ID:
- ivo://CDS.VizieR/J/MNRAS/488/4905
- Title:
- SuperWASP transit false positive catalog
- Short Name:
- J/MNRAS/488/4905
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- SuperWASP, the Northern hemisphere WASP observatory, has been observing the skies from La Palma since 2004. In that time, more than 50 planets have been discovered with data contributions from SuperWASP. In the process of validating planets, many false-positive candidates have also been identified. The TESS telescope is set to begin observations of the northern sky in 2019. Similar to the WASP survey, the TESS pixel size is relatively large (13 arcsec for WASP and 21 arcsec for TESS), making it susceptible to many blended signals and false detections caused principally by grazing and blended stellar eclipsing binary systems. In order to reduce duplication of effort on targets, we present a catalogue of 1041 Northern hemisphere SuperWASP targets that have been rejected as planetary transits through follow-up observation.
- ID:
- ivo://CDS.VizieR/J/AJ/161/134
- Title:
- Survey of stellar & planetary comp. within 25pc
- Short Name:
- J/AJ/161/134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore the impact of outer stellar companions on the occurrence rate of giant planets detected with radial velocities. We searched for stellar and planetary companions to a volume-limited sample of solar-type stars within 25pc. Using adaptive optics imaging observations from the Lick 3m and Palomar 200" Telescopes, we characterized the multiplicity of our sample stars, down to the bottom of the main sequence. With these data, we confirm field star multiplicity statistics from previous surveys. We additionally combined three decades of radial velocity (RV) data from the California Planet Search with newly collected RV data from Keck/HIRES and the Automated Planet Finder/Levy Spectrometer to search for planetary companions in these same systems. Using an updated catalog of both stellar and planetary companions, as well as detailed injection/recovery tests to determine our sensitivity and completeness, we measured the occurrence rate of planets among the single and multiple-star systems. We found that planets with masses in the range of 0.1-10M_J_ and with semimajor axes of 0.1-10au have an occurrence rate of 0.18_-0.03_^+0.04^ planets per star when they orbit single stars and an occurrence rate of 0.12{+/-}0.04 planets per star when they orbit a star in a binary system. Breaking the sample down by the binary separation, we found that only one planet-hosting binary system had a binary separation <100au, and none had a separation <50au. These numbers yielded planet occurrence rates of 0.20_-0.06_^+0.07^ planets per star for binaries with separation aB>100au and 0.04_-0.02_^+0.04^ planets per star for binaries with separation aB<100au. The similarity in the planet occurrence rate around single stars and wide primaries implies that wide binary systems should actually host more planets than single-star systems, since they have more potential host stars. We estimated a system-wide planet occurrence rate of 0.3 planets per wide binary system for binaries with separations aB>100au. Finally, we found evidence that giant planets in binary systems have a different semimajor-axis distribution than their counterparts in single-star systems. The planets in the single-star sample had a significantly higher occurrence rate outside of 1au than inside 1au by nearly 4{sigma}, in line with expectations that giant planets are most common near the snow line. However, the planets in the wide binary systems did not follow this distribution, but rather had equivalent occurrence rates interior and exterior to 1au. This may point to binary-mediated planet migration acting on our sample, even in binaries wider than 100au.
387. SWEET-Cat updated
- ID:
- ivo://CDS.VizieR/J/A+A/620/A58
- Title:
- SWEET-Cat updated
- Short Name:
- J/A+A/620/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, which mostly depend on their host stars. We perform a significant update of the Stars With ExoplanETs CATalog (SWEET-Cat), a unique compilation of precise stellar parameters for planet-host stars provided for the exoplanet community. We made use of high-resolution spectra for planet-host stars, either observed by our team or found in several public archives. The new spectroscopic parameters were derived for the spectra following the same homogeneous process (ARES+MOOG). The host star parameters were then merged together with the planet properties listed in exoplanet.eu to perform simple data analysis. We present new spectroscopic homogeneous parameters for 106 planet-host stars. Sixty-three planet hosts are also reviewed with new parameters. We also show that there is a good agreement between stellar parameters derived for the same star but using spectra obtained from different spectrographs. The planet-metallicity correlation is reviewed showing that the metallicity distribution of stars hosting low-mass planets (below 30M_{sun}_) is indistinguishable from that from the solar neighborhood sample in terms of metallicity distribution.
- ID:
- ivo://CDS.VizieR/J/AJ/162/163
- Title:
- Systematic KMTNet Planetary Anomaly Search. I.
- Short Name:
- J/AJ/162/163
- Date:
- 14 Mar 2022 06:36:47
- Publisher:
- CDS
- Description:
- In order to exhume the buried signatures of "missing planetary caustics" in Korea Microlensing Telescope Network (KMTNet) data, we conducted a systematic anomaly search of the residuals from point-source point-lens fits, based on a modified version of the KMTNet EventFinder algorithm. This search revealed the lowest-mass-ratio planetary caustic to date in the microlensing event OGLE-2019-BLG-1053, for which the planetary signal had not been noticed before. The planetary system has a planet-host mass ratio of q=(1.25{+/-}0.13)x10^-5^. A Bayesian analysis yielded estimates of the mass of the host star, M_host_=0.61_-0.24_^+0.29^M{sun}, the mass of its planet, M_planet_=2.48_-0.98_^+1.19^M{Earth}, the projected planet-host separation, a_perp_=3.4_-0.5_^+0.5^au, and the lens distance, D_L_=6.8_-0.9_^+0.6^kpc. The discovery of this very-low-mass-ratio planet illustrates the utility of our method and opens a new window for a large and homogeneous sample to study the microlensing planet-host mass ratio function down to q~10^-5^.
- ID:
- ivo://CDS.VizieR/J/AJ/161/246
- Title:
- Tansit time variations for 12 exoplanets
- Short Name:
- J/AJ/161/246
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We identify a set of planetary systems observed by Kepler that merit transit-timing variation (TTV) analysis given the orbital periods of transiting planets, the uncertainties for their transit times, and the number of transits observed during the Kepler mission. We confirm the planetary nature of four Kepler Objects of Interest within multicandidate systems. We forward-model each of the planetary systems identified to determine which systems are likely to yield mass constraints that may be significantly improved upon with follow-up transit observations. We find projected TTVs diverge by more than 90 minutes after 6000 days in 27 systems, including 22 planets with orbital periods exceeding 25 days. Such targets would benefit the most from additional transit-timing data. TTV follow-up could push exoplanet characterization to lower masses, at greater orbital periods and at cooler equilibrium temperatures than is currently possible from the Kepler data set alone. Combining TTVs and recently revised stellar parameters, we characterize an ensemble of homogeneously selected planets and identify planets in the Kepler field with large-enough estimated transmission annuli for atmospheric characterization with James Webb Space Telescope.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A59
- Title:
- tau Boo Radial velocities & astrometric data
- Short Name:
- J/A+A/625/A59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of planets in compact or highly eccentric binaries and the migration of hot Jupiters are two outstanding problems in planet formation. Detailed characterisation of known systems is important for informing and testing models. The hot Jupiter {tau} Boo Ab orbits the primary star in the long-period (P>~1000yr), highly eccentric (e~0.9) double star system {tau} Bootis. Due to the long orbital period, the orbit of the stellar binary is poorly constrained. Here we aim to constrain the orbit of the stellar binary {tau} Boo AB in order to investigate the formation and migration history of the system. The mutual orbital inclination of the stellar companion and the hot Jupiter has important implications for planet migration. The binary eccentricity and periastron distance are important for understanding the conditions under which {tau} Boo formed. We combine more than 150 years of astrometric data with twenty-five years of high-precision radial velocities. The combination of sky-projected and line-of-sight measurements places tight constraints on the orbital inclination, eccentricity, and periastron distance of {tau} Boo AB. We determine the orbit of {tau} Boo B and find an orbital inclination of 47.2^+2.7^_-3.7_{deg}, a periastron distance of 28.3^+2.3^_-3.0_au, and an eccentricity of 0.87^+0.04^_-0.03_. We find that the orbital inclinations of {tau} Boo Ab and {tau} Boo B, as well as the stellar spin-axis of {tau} Boo A coincide at ~45 degrees, a result consistent with the assumption of a well-aligned, coplanar system. The likely aligned, coplanar configuration suggests planetary migration within a well-aligned protoplanetary disc. Due to the high eccentricity and small periastron distance of {tau} Boo B, the protoplanetary disc was tidally truncated at ~6au. We suggest that {tau} Boo Ab formed near the edge of the truncated disc and migrated inwards with high eccentricity due to spiral waves generated by the stellar companion.