- ID:
- ivo://CDS.VizieR/J/AJ/157/82
- Title:
- TEMP. V. Photometry of HAT-P-9, HAT-P-32 & HAT-P-36
- Short Name:
- J/AJ/157/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- During the past five years, 6, 7, and 26 transit observations were carried out for the HAT-P-9b, HAT-P-32b, and HAT-P-36b systems, respectively, through the Transiting Exoplanet Monitoring Project network. Combined with the published photometric data and radial-velocity measurements, our new photometry allows us to revisit the system parameters and search for additional close-in planetary companions in these hot Jupiter systems. We measure an updated R_P_/R_*_=0.1260+/-0.0011 for HAT-P-36 system in the R band, which is 4.5{sigma} larger than the published i-band radius ratio of 0.1186+/-0.0012. We also perform a transit timing variation (TTV) analysis for each system. Because no significant TTVs were found, we place an upper mass limit on an additional planet for each system.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/IV/39
- Title:
- TESS Input Catalog version 8.2 (TIC v8.2)
- Short Name:
- IV/39
- Date:
- 03 Mar 2022 07:19:26
- Publisher:
- CDS
- Description:
- We define various types of "phantom" stars that may appear in the TESS Input Catalog (TIC), and provide examples and lists of currently known cases. We present a methodology that can be used to check for phantoms around any object of interest in the TIC, and we present an approach for correcting the TIC-reported flux contamination factors accordingly. We checked all 2077 TESS Objects of Interest (TOIs) known as of July 21st 2020 (Sectors 1 to 24) and sent corrections for 291 stars to MAST where they are integrated into the publicly available TIC-8, updating it to TIC 8.1. We used the experience gained to construct an all-sky algorithm searching for "phantoms" which led to 34 million updates integrated into TIC 8.2.
- ID:
- ivo://CDS.VizieR/IV/38
- Title:
- TESS Input Catalog - v8.0 (TIC-8)
- Short Name:
- IV/38
- Date:
- 11 Feb 2022 14:26:27
- Publisher:
- CDS
- Description:
- The TIC is used to help identify two-minute cadence target selection for the Transiting Exoplanet Survey Satellite (TESS) mission, and to calculate physical and observational properties of planet candidates. It is for use by both the TESS science team and the public, and it is periodically updated - the current version is TIC-8. TIC-8 uses the GAIA DR2 catalog as a base and merges a large number of other photometric catalogs, including 2MASS, UCAC4, APASS, SDSS, WISE, etc. There are roughly 1.5 billion stellar and extended sources in TIC-8, containing compiled magnitudes including B, V, u, g, r, i, z, J, H, K, W1-W4, and G. This version was released in May 2019, and is expected to be the last official version of the TIC produced by the TESS mission, although future, independent development of the TIC is possible. The TIC is the responsibility of the SAO Arm of the TESS Science Office under the leadership of David Latham. The TESS Target Selection Working Group (TSWG) is co-chaired by Keivan Stassun (Vanderbilt) & Joshua Pepper (Lehigh).
- ID:
- ivo://CDS.VizieR/J/AJ/162/265
- Title:
- TESS-Keck survey. VI. HIP-97166 radial velocity
- Short Name:
- J/AJ/162/265
- Date:
- 16 Mar 2022 06:42:57
- Publisher:
- CDS
- Description:
- We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3day orbit around a K0 dwarf 68pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M_b_=20{+/-}2M{Earth} along with a radius of R_b_=2.7{+/-}0.1R{Earth} from photometry. We detected an additional nontransiting planetary companion with M_c_sini=10{+/-}2M{Earth} on a 16.8day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b=0.84{+/-}0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10^5^ orbits yielded eccentricity constraints e_b_=0.16{+/-}0.03 and e_c_<0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3{+/-}0.9g/cc as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.
- ID:
- ivo://CDS.VizieR/J/AJ/162/215
- Title:
- TESS-Keck survey.V. Radial velocities of HD63935
- Short Name:
- J/AJ/162/215
- Date:
- 14 Mar 2022 08:19:39
- Publisher:
- CDS
- Description:
- We present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD63935, a bright (V=8.6mag), Sun-like (Teff=5560K) star at 49pc. TESS identified the first planet, HD63935b (TOI-509.01), in Sectors 7 and 34. We identified the second signal (HD63935c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600{+/-}0.007 and 21.40{+/-}0.0019days, radii of 2.99{+/-}0.14 and 2.90{+/-}0.13R{Earth}, and masses of 10.8{+/-}1.8 and 11.1{+/-}2.4M{Earth}. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey's efforts to choose the best targets for James Webb Space Telescope atmospheric follow-up. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6R{Earth}<Rp<4R{Earth}), moderately irradiated (100F{Earth}<Fp<1000F{Earth}) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets.
- ID:
- ivo://CDS.VizieR/J/AJ/158/45
- Title:
- TESS light curve & radial velocities for HD 1397
- Short Name:
- J/AJ/158/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a transiting planet first identified as a candidate in Sector 1 of the Transiting Exoplanet Survey Satellite (TESS), and then confirmed with precision radial velocities. HD 1397b has a mass of M_P_=0.367_-0.023_^+0.022^ M_J_, a radius of R_P_=1.023_-0.013_^+0.013^ R_J_, and orbits its bright host star (V=7.8 mag) with an orbital period of 11.5366+/-0.0003 d on a moderately eccentric orbit (e=0.216_-0.026_^+0.027^). With a mass of M_*_=1.257_-0.029_^+0.029^ M_{sun}_, a radius of R_*_=2.341_-0.019_^+0.022^ R_{sun}_, and an age of 4.46+/-0.25 Gyr, the solar-metallicity host star has already departed from the main sequence. We find evidence in the radial velocity measurements of a secondary signal with a longer period. We attribute it to the rotational modulation of stellar activity, but a long-term radial velocity monitoring would be necessary to discard if this signal is produced by a second planet in the system. The HD 1397 system is among the brightest ones currently known to host a transiting planet, which will make it possible to perform detailed follow-up observations in order to characterize the properties of giant planets orbiting evolved stars.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A114
- Title:
- TESS light curves detection limits
- Short Name:
- J/A+A/630/A114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The primary targets of the NASA Transiting Exoplanet Survey Satellite will be K and M dwarf stars within our solar neighbourhood. Young K and M dwarf stars are known to exhibit a high starspot coverage (~50%), however, older stars are known to show fewer starspots. This implies that TESS 2 min cadence transit light curves may contain starspot anomalies, and if so, will require transit-starspot models to accurately determine the properties of the system. The goals are to determine if starspot anomalies can manifest in TESS transit light curves, to determine the detection limits of the starspot anomalies and to examine the relationship between the change in flux caused by the starspot anomaly and the planetary transit. 20573 simulations of planetary transits around spotted stars were conducted using the transit-starspot model, PRISM. In total 3888 different scenarios were considered using three different host star spectral types, M4V, M1V and K5V. The mean amplitude of the starspot anomaly was measured and compared to the photometric precision of the light curve, to determine if the starspot anomaly's characteristic "blip" was noticeable in the light curve. Results. The simulations show that, starspot anomalies will be observable in TESS 2 min cadence data. The smallest starspot detectable in TESS transit light curves has a radius of ~1900km. The starspot detection limits for the three host stars are: 4900+/-1700km (M4V), 13800+/-6000km (M1V) and 15900+/-6800km (K5V). The smallest change in flux of the starspot ({Delta}F_spot_=0.00015+/-0.00001) can be detected when the ratio between the planetary and stellar radii, k=0.082+/-0.004. The results confirm known dependencies between the amplitude of the starspot anomaly and the photometric parameters of the light curve. The results allowed the characterisation of the relationship between the change in flux of the starspot anomaly and the change in flux of the planetary transit for TESS transit light curves.
- ID:
- ivo://CDS.VizieR/J/AJ/157/113
- Title:
- TESS M-dwarf exoplanetary systems
- Short Name:
- J/AJ/157/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the M-dwarf exoplanetary systems forthcoming from NASA's TESS mission. While the mission's footprint is too complex to be characterized by a single detection completeness, we extract ensemble completeness functions that recover the planet detections from previous work for stars between 3200 and 4000 K. We employ these completeness functions, together with a dual- population planet occurrence model that includes compact multiple planetary systems, to infer anew the planet yield. We predict both the number of M-dwarf planets likely from TESS and their system architectures. We report four main findings. First, TESS will likely detect more planets orbiting M dwarfs that previously predicted. Around stars with effective temperatures between 3200 and 4000 K, we predict that TESS will find 1274+/-241 planets orbiting 1026+/-182 stars, a 1.2-fold increase over previous predictions. Second, TESS will find two or more transiting planets around 20% of these host stars, a number similar to the multiplicity yield of NASA's Kepler mission. Third, TESS light curves in which one or more planets are detected will often contain transits of additional planets below the detection threshold of TESS. Among a typical set of 200 TESS hosts to one or more detected planets, 93+/-17 transiting planets will be missed. Transit follow-up efforts with the photometric sensitivity to detect an Earth or larger around a mid-M dwarf, even with very modest period completeness, will readily result in additional planet discoveries. Fourth, the strong preference of TESS for systems of compact multiples indicates that TESS planets will be dynamically cooler on average than Kepler planets, with 90% of TESS planets residing in orbits with e<0.15. We include both (1) a predicted sample of planets detected by TESS orbiting stars between 3200 and 4000 K, including additional nontransiting planets, or transiting and undetected planets orbiting the same star and (2) sample completeness functions for use by the community.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A71
- Title:
- TESS optical phase curve of KELT-1b
- Short Name:
- J/A+A/648/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). The light curve shows variations due to ellipsoidal variations, Doppler beaming, transit and secondary eclipse of KELT-1, and phase curve variations of KELT-1b.
- ID:
- ivo://CDS.VizieR/J/AJ/158/13
- Title:
- The first 300 stars observed by the GPIES
- Short Name:
- J/AJ/158/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey. This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semimajor axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M_*_>1.5 M_{sun}_ more likely to host planets with masses between 2 and 13 M_Jup_ and semimajor axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semimajor axis (a) for planet populations around high-mass stars (M_*_>1.5 M_{sun}_) of the form d^2^N/(dm da){prop.to}m^{alpha}^{alpha}^{beta}^, finding {alpha}=-2.4+/-0.8 and {beta}=-2.0+/-0.5, and an integrated occurrence rate of 9_-4_^+5^% between 5-13 M_Jup_ and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.8_-0.5_^+0.8^% of stars hosting a brown dwarf companion between 13-80 M_Jup_ and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semimajor axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semimajor axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the radial velocity method, our results are consistent with a peak in occurrence of giant planets between ~1 and 10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.