- ID:
- ivo://CDS.VizieR/J/A+A/581/A11
- Title:
- 72 WINGS nearby clusters luminosity functions
- Short Name:
- J/A+A/581/A11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using V band photometry of the WINGS survey, we derive galaxy luminosity functions (LF) in nearby clusters. This sample is complete down to M_V_=-15.15, and it is homogeneous, thus facilitating the study of an unbiased sample of clusters with different characteristics. We constructed the photometric LF for 72 out of the original 76 WINGS clusters, excluding only those without a velocity dispersion estimate. For each cluster we obtained the LF for galaxies in a region of radius=0.5xr_200_, and fitted them with single and double Schechter's functions. We also derive the composite LF for the entire sample, and those pertaining to different morphological classes. Finally, we derive the spectroscopic cumulative LF for 2009 galaxies that are cluster members. The double Schechter fit parameters are correlated neither with the cluster velocity dispersion nor with the X-ray luminosity. Our median values of the Schechter's fit slope are, on average, in agreement with measurements of nearby clusters, but are less steep that those derived from large surveys, such as the SDSS. Early-type galaxies out number late-types at all magnitudes, but both early and late types contribute equally to the faint end of the LF. Finally, the spectroscopic LF is in excellent agreement with the one derived for A2199, A85 and Virgo, and with the photometric LF at the bright magnitudes (where both are available). There is a large spread in the LF of different clusters, however, this spread is not caused by correlation of the LF shape with cluster characteristics such as X-ray luminosity or velocity dispersions. The faint end is flatter than previously derived ({alpha}_f_=-1.7), which is at odds with that predicted from numerical simulations.
Number of results to display per page
Search Results
4172. WINGS-SPE II catalog
- ID:
- ivo://CDS.VizieR/J/A+A/526/A45
- Title:
- WINGS-SPE II catalog
- Short Name:
- J/A+A/526/A45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The WIde-field Nearby Galaxy clusters Survey (WINGS) is a project whose primary goal is to study the galaxy populations in clusters in the local universe, and of the influence of environment on their stellar populations. This survey has provided the astronomical community with a high quality set of photometric and spectroscopic data for 77 and 48 nearby galaxy clusters, respectively. We present the catalog containing the properties of galaxies observed by the wings spectroscopic survey, which were derived using stellar populations synthesis modelling approach. We also check the consistency of our results with other data in the literature. Using a spectrophotometric model that reproduces the main features of observed spectra by summing the theoretical spectra of simple stellar populations of different ages, we derive the stellar masses, star formation histories, average age and dust attenuation of galaxies in our sample. ~5300 spectra were analyzed with spectrophotometric techniques, and this allowed to derive the star formation history, stellar masses and ages, and extinction for the wings spectroscopic sample that we present in this paper. The comparison with the total mass values of the same galaxies derived by other authors based on sdss data, confirms the reliability of the adopted methods and data.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A51
- Title:
- WIRCam Ultra Deep Survey photometric catalogs
- Short Name:
- J/A+A/620/A51
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The aim of this paper is to introduce the WIRCam Ultra Deep Survey (WUDS), a near-IR photometric survey carried out at the CFH Telescope in the field of the CFHTLS-D3 field (Groth Strip). WUDS includes four near-IR bands (Y, J, H and Ks) over a field of view of ~400arcmin^2^. The typical depth of WUDS data reaches between ~26.8 in Y and J, and ~26 in H and Ks (AB, 3{sigma} in 1.3" aperture), whereas the corresponding depth of the CFHTLS-D3 images in this region ranges between 28.6 and 29 in ugr, 28.2 in i and 27.1 in z (same S/N and aperture). The area and depth of this survey were specifically tailored to set strong constraints on the cosmic star formation rate and the luminosity function brighter or around L* in the z~6-10 redshift domain, although these data are also useful for a variety of extragalactic projects. This first paper is intended to present the properties of the public WUDS survey in details: catalog building, completeness and depth, number counts, photometric redshifts, and global properties of the galaxy population. We have also concentrated on the selection and characterization of galaxy samples at z~[4.5-7] in this field. For these purposes, we include an adjacent shallower area of ~1260arcmin^2^ in this region, extracted from the WIRCam Deep Survey (WIRDS), and observed in J, H and Ks bands. UV luminosity functions were derived at z~5 and z~6 taking advantage from the fact that WUDS covers a particularly interesting regime at intermediate luminosities, which allows a combined determination of M* and {PHI}* with increased accuracy. Our results on the luminosity function are consistent with a small evolution of both M* and {PHI}* between z=5 and z=6, irrespective of the method used to derive them, either photometric redshifts applied to blindly-selected dropout samples or the classical Lyman Break Galaxy color-preselected samples. Our results lend support to higher {PHI}* determinations at z=6 than usually reported. The selection and combined analysis of different galaxy samples at z>=7 will be presented in a forthcoming paper, as well as the evolution of the UV luminosity function between z~4.5 and 9. WUDS is intended to provide a robust database in the near-IR for the selection of targets for detailed spectroscopic studies, in particular for the EMIR/GTC GOYA Survey.
- ID:
- ivo://CDS.VizieR/J/ApJ/743/34
- Title:
- WISE and SDSS-DR7 data in 69 galaxy clusters
- Short Name:
- J/ApJ/743/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a systematic study of star formation in local galaxy clusters using 22um data from the Wide-field Infrared Survey Explorer (WISE). The 69 systems in our sample are drawn from the Cluster Infall Regions Survey, and all have robust mass determinations. The all-sky WISE data enable us to quantify the amount of star formation, as traced by 22um, as a function of radius well beyond R_200_, and investigate the dependence of total star formation rate upon cluster mass. We find that the fraction of star-forming galaxies increases with cluster radius but remains below the field value even at 3R_200_. We also find that there is no strong correlation between the mass-normalized total specific star formation rate and cluster mass, indicating that the mass of the host cluster does not strongly influence the total star formation rate of cluster members.
- ID:
- ivo://CDS.VizieR/J/ApJ/866/44
- Title:
- WISE/DEIMOS Redshift Catalog DR2 & extended data
- Short Name:
- J/ApJ/866/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The WISE satellite surveyed the entire sky multiple times in four infrared (IR) wavelengths (3.4, 4.6, 12, and 22{mu}m). This all-sky IR photometric survey makes it possible to leverage many of the large publicly available spectroscopic redshift surveys to measure galaxy properties in the IR. While characterizing the cross-matching of WISE data to a single survey is a straightforward process, doing it with six different redshift surveys takes a fair amount of space to characterize adequately, because each survey has unique caveats and characteristics that need addressing. This work describes a data set that results from matching five public redshift surveys with the AllWISE data release, along with a reanalysis of the data described in Lake+ (2012, J/AJ/143/7). The combined data set has an additional flux limit of 80{mu}Jy (19.14 AB mag) in WISE's W1 filter, imposed in order to limit it to targets with high completeness and reliable photometry in the AllWISE data set. Consistent analysis of all of the data is only possible if the color bias discussed in Ilbert+ (2004MNRAS.351..541I) is addressed (e.g., the techniques explored in Lake+ 2017AJ....153..189L). The sample defined herein is used in a companion paper in this series to measure the luminosity function of galaxies at 2.4{mu}m rest-frame wavelength, and the selection process of the sample is optimized for this purpose.
- ID:
- ivo://CDS.VizieR/J/ApJ/805/90
- Title:
- WISE ELIRGs and comparison with QSOs
- Short Name:
- J/ApJ/805/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L_bol_>10^14^L_{sun}_, including five with infrared luminosities L_IR_{equiv}L_(rest8-1000{mu}m)_>10^14^L_{sun}_. These "extremely luminous infrared galaxies", or ELIRGs, were discovered using the "W1W2-dropout" selection criteria which requires marginal or non-detections at 3.4 and 4.6{mu}m (W1 and W2, respectively) but strong detections at 12 and 22{mu}m in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4-10{mu}m, suggesting that hot dust with T_d_~450K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L_bol_ level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8{mu}m luminosities of the WISE-selected ELIRGs can be 30%-80% higher than that of the unobscured quasars. The existence of AGNs with L_bol_>10^14^L_{sun}_ at z>3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ~10^3^M_{sun}_, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/25
- Title:
- WISE Extended Source Catalog (WXSC). I.
- Short Name:
- J/ApJS/245/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present mid-infrared photometry and measured global properties of the 100 largest galaxies in the sky, including the well-studied Magellanic Clouds, Local Group galaxies M31 and M33, the Fornax and Virgo galaxy cluster giants, and many of the most spectacular Messier objects (e.g., M51 and M83). This is the first release of a larger catalog of extended sources as imaged in the mid-infrared, called the Wide-field Infrared Survey Explorer (WISE) Extended Source Catalog (WXSC). In this study, we measure their global attributes, including integrated flux, surface brightness, and radial distribution. The largest of the large are the LMC, SMC, and Andromeda galaxy, which are also the brightest mid-infrared galaxies in the sky. We interrogate the large galaxies using WISE colors, which serve as proxies for four general types of galaxies: bulge-dominated spheroidals, intermediate semi-quiescent disks, star-forming (SF) spirals, and AGN-dominated. The colors reveal a tight "sequence" that spans 5 mag in W2-W3 color, ranging from early to late types and low to high SF activity; we fit the functional form given by (W1-W2)=[0.015*e^(W2-W3)/1.38^]-0.08. Departures from this sequence may reveal nuclear, starburst, and merging events. Physical properties and luminosity attributes are computed, notably the diameter, aggregate stellar mass, and dust-obscured star formation activity. To effectively study and compare these galaxy characteristics, we introduce the "pinwheel" diagram, which depicts physical properties with respect to the median value observed for WISE galaxies in the local universe. Utilized with the WXSC, this diagram will delineate between different kinds of galaxies, identifying those with similar star formation and structural properties. Finally, we present the mid-infrared photometry of the 25 brightest globular clusters in the sky, of which many are also the largest and brightest objects orbiting the Milky Way, including Omega Centauri, 47 Tucanae, and a number of famed night-sky targets (e.g., M13).
- ID:
- ivo://CDS.VizieR/J/ApJS/213/25
- Title:
- WISE Massive & Distant Clusters (MaDCoWS). II.
- Short Name:
- J/ApJS/213/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z~1 clusters of galaxies over an area of 10000deg^2^. Our spectroscopy confirms 19 new clusters at 0.7<z<1.3, half of which are at z>1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/280
- Title:
- WISE MIR properties of galaxies in compact groups
- Short Name:
- J/ApJ/835/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with M_r_<-19.77 and 0.01<z<0.0741, drawn from Sohn+ (2016, J/ApJS/225/23), which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12um with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]-[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.
- ID:
- ivo://CDS.VizieR/J/ApJS/255/10
- Title:
- WISE MIR variability in gamma-ray Seyfert 1 gal.
- Short Name:
- J/ApJS/255/10
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Fermi-LAT's detection of {gamma}-rays from narrow-line Seyfert 1 galaxies (NLS1s) has received increasing attention. Understanding these {gamma}-NLS1s is of interest because they have some properties similar to blazars, which are known to show rapid and large-amplitude variability. Based on the largest sample of {gamma}-NLS1s (25 sources), we carried out a systematic search for rapid mid-infrared (MIR, 3.4 and 4.6{mu}m) variability using the multiepoch data of the Wide-field Infrared Survey Explorer (WISE). We also compared a few variability properties between {gamma}-NLS1s and {gamma}-ray blazars. Our main results are as follows. (1) Thirteen {gamma}-NLS1s showed significant (>3{sigma}) rapid variability in at least one of the two MIR bands. The MIR emission of these sources is dominated by the synchrotron emission of relativistic electrons in the jet. (2) The {gamma}-NLS1s with flat radio spectra are more variable than those not detected in {gamma}-rays. (3) The {gamma}-NLS1s tend to show smaller amplitude of variability as well as lower duty cycle relative to {gamma}-ray blazars. (4) The {gamma}-NLS1s tend to show a trend of bluer-when-brighter on both intraday and long timescales, similar to {gamma}-ray blazars. (5) The {gamma}-NLS1s that are more variable on long timescales have larger amplitudes of variability and higher duty cycles on intraday timescales. (6) In the majority of cases, the {gamma}-NLS1s fall in the WISE Gamma-ray Blazar Strip (WGS). However, we noted migrations outside of the WGS due to significant variability.