- ID:
- ivo://CDS.VizieR/J/A+AS/116/429
- Title:
- Classification of Coma early galaxies
- Short Name:
- J/A+AS/116/429
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of an isophotal shape analysis of three samples of galaxies in the Coma cluster. Quantitative morphology, together with structural and photometric parameters, is given for each galaxy. Special emphasis has been placed on the detailed classification of early-type galaxies. The three samples are: i) a sample of 97 early-type galaxies brighter than m_B_=17.00 falling within one degree from the center of the Coma cluster; these galaxies were observed with CCD cameras, mostly in good to excellent resolution conditions; ii) a magnitude complete sample of 107 galaxies of all morphological types down to m_B_=17.00 falling in a circular region of 50arcmin diameter, slightly offcentered to the North-West of the cluster center; the images for this and the next sample come from digitized photographic plates; iii) a complete comparison sample of 26 galaxies of all morphological types down to m_R_=16.05 (or m_B_=~17.5), also in a region of 50arcmin diameter, but centered 2.6degrees West of the cluster center. The reliability of our morphological classifications and structural parameters of galaxies, down to the adopted magnitude limits, is assessed by comparing the results on those galaxies for which we had images taken with different instrumentation and/or seeing conditions, and by comparing our results with similar data from other observers.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/147/1
- Title:
- Classification of nearby galaxies
- Short Name:
- J/ApJS/147/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A major problem in extragalactic astronomy is the inability to distinguish in a robust, physical, and model-independent way how galaxy populations are physically related to each other and to their formation histories. A similar, but distinct, and also long-standing question is whether the structural appearances of galaxies, as seen through their stellar light distributions, contain enough physical information to offer this classification. We argue through the use of 240 images of nearby galaxies that three model-independent parameters measured on a single galaxy image reveal its major ongoing and past formation modes and can be used as a robust classification system. These parameters quantitatively measure: the concentration (C), asymmetry (A), and clumpiness (S) of a galaxy's stellar light distribution. When combined into a three-dimensional "CAS" volume all major classes of galaxies in various phases of evolution are cleanly distinguished. We argue that these three parameters correlate with important modes of galaxy evolution: star formation and major merging activity. This is argued through the strong correlation of H{alpha} equivalent width and broadband colors with the clumpiness parameter S, the uniquely large asymmetries of 66 galaxies undergoing mergers, and the correlation of bulge to total light ratios, and stellar masses, with the concentration index. As an obvious goal is to use this system at high redshifts to trace evolution, we demonstrate that these parameters can be measured, within a reasonable and quantifiable uncertainty with available data out to z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Field images.
- ID:
- ivo://CDS.VizieR/J/MNRAS/414/1617
- Title:
- Classification of type Ia supernovae
- Short Name:
- J/MNRAS/414/1617
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Type Ia supernovae (SNe Ia) spectra are compared using the coefficient of the largest wavelet scale in their decomposition. Two distinct subgroups have been identified, and their occurrence is discussed with regards to the use of SNe Ia as cosmological probes. Apart from the group of normal SNe, another trend characterized by intrinsically redder colours consists of many different SN events, which exhibit diverse properties. These include the interaction with the circumstellar material and the existence of a specific shell structure in or surrounding the SN ejecta or super-Chandrasekhar mass progenitors. Compared with normal objects, these SNe may violate the standard width-luminosity correction. This could influence the cosmological results if these are all calibrated equally, as their fraction among SNe Ia is not negligible when performing precision cosmology. Using the largest wavelet scale coefficient in combination with long-baseline B-I colours, we show how to disentangle the SN intrinsic colour from the part that corresponds to the reddening as a result of dust extinction in the host galaxy in the SALT2 colour parameter c.
- ID:
- ivo://CDS.VizieR/J/ApJ/786/20
- Title:
- Classification of 2XMM variable sources
- Short Name:
- J/ApJ/786/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/805/181
- Title:
- Classification of 1.5<=z<=3 HUDF galaxies
- Short Name:
- J/ApJ/805/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- At z>~1, the distinction between merging and "normal" star-forming galaxies based on single band morphology is often hampered by the presence of large clumps which result in a disturbed, merger-like appearance even in rotationally supported disks. In this paper we discuss how a classification based on canonical, non-parametric structural indices measured on resolved stellar mass maps, rather than on single-band images, reduces the misclassification of clumpy but not merging galaxies. We calibrate the mass-based selection of mergers using the MIRAGE hydrodynamical numerical simulations of isolated and merging galaxies which span a stellar mass range of 10^9.8^-10^10.6^M_{sun}_ and merger ratios between 1:1-1:6.3. These simulations are processed to reproduce the typical depth and spatial resolution of observed Hubble Ultra Deep Field (HUDF) data. We test our approach on a sample of real z~=2 galaxies with kinematic classification into disks or mergers and on ~100 galaxies in the HUDF field with photometric/spectroscopic redshift between 1.5<=z<=3 and M>10^9.4^M_{sun}_. We find that a combination of the asymmetry A_MASS_ and M_20,MASS_ indices measured on the stellar mass maps can efficiently identify real (major) mergers with <~20% contamination from clumpy disks in the merger sample. This mass-based classification cannot be reproduced in star-forming galaxies by H-band measurements alone, which instead result in a contamination from clumpy galaxies which can be as high as 50%. Moreover, we find that the mass-based classification always results in a lower contamination from clumpy galaxies than an H-band classification, regardless of the depth of the imaging used (e.g., CANDELS versus HUDF).
- ID:
- ivo://CDS.VizieR/J/PASP/115/1280
- Title:
- Classifications of SN host galaxies
- Short Name:
- J/PASP/115/1280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Classifications on the DDO system are given for an additional 231 host galaxies of supernovae that have been discovered during the course of the Lick Observatory Supernova Search with the Katzman Automatic Imaging Telescope (KAIT). This brings the total number of hosts of supernovae (SNe) discovered (or independently rediscovered) by KAIT, which have so far been classified on a homogeneous system, to 408.
- ID:
- ivo://CDS.VizieR/J/PASP/117/773
- Title:
- Classifications of SN host galaxies. III
- Short Name:
- J/PASP/117/773
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A homogeneous sample comprising host galaxies of 604 recent supernovae, including 212 objects discovered primarily in 2003 and 2004, has been classified on the David Dunlap Observatory system.
- ID:
- ivo://CDS.VizieR/J/AJ/141/189
- Title:
- Classifiers for star/galaxy separation
- Short Name:
- J/AJ/141/189
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function.
- ID:
- ivo://CDS.VizieR/J/AJ/116/584
- Title:
- Cl J0023+0423 and Cl J1604+4304 morphology
- Short Name:
- J/AJ/116/584
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed morphological analysis of the galaxy populations in the first two clusters to be completed in an extensive observational study of nine high-redshift clusters of galaxies. These two clusters, Cl 0023+0423 and Cl 1604+4304, are at redshifts of z=0.84 and z=0.90, respectively. The morphological studies are based on high angular resolution imagery taken with Wide Field Planetary Camera 2 aboard the Hubble Space Telescope. These data are combined with deep, ground-based BVRI photometry and spectra taken with the Keck 10m telescopes. The morphological classifications presented in this paper consist of two parts. First, we provide a quantitative description of the structural properties of ~600 galaxies per cluster field using the Medium Deep Survey automated data reduction and object classification software. This analysis includes the galaxy position, photometry, and best-fit bulge+disk model. Second, for the brightest subsample of ~200 galaxies per cluster field, we provide a more detailed morphological description through a visual classification based on the revised Hubble classification scheme.
- ID:
- ivo://CDS.VizieR/J/A+A/597/A122
- Title:
- Cluster and field elliptical galaxies at z~1.3
- Short Name:
- J/A+A/597/A122
- Date:
- 04 Feb 2022 00:04:27
- Publisher:
- CDS
- Description:
- The aim of this work is twofold: first, to assess whether the population of elliptical galaxies in cluster at z~1.3 differs from the population in the field and whether their intrinsic structure depends on the environment where they belong; second, to constrain their properties 9Gyr back in time through the study of their scaling relations. We compared a sample of 56 cluster elliptical galaxies selected from three clusters at 1.2<z<1.4 with elliptical galaxies selected at comparable redshift in the GOODS-South field (~30), in the COSMOS area (~180), and in the CANDELS fields (~220). To single out the environmental effects, we selected cluster and field elliptical galaxies according to their morphology. We compared physical and structural parameters of galaxies in the two environments and we derived the relationships between effective radius, surface brightness, stellar mass, and stellar mass density {Sigma}_R_e__ within the effective radius and central mass density {Sigma}_1kpc_, within 1kpc radius. We find that the structure and the properties of cluster elliptical galaxies do not differ from those in the field: they are characterized by the same structural parameters at fixed mass and they follow the same scaling relations. On the other hand, the population of field elliptical galaxies at z~1.3 shows a significant lack of massive (M_*_>2x10^11^M_{sun}_) and large (R_e_>4-5kpc) elliptical galaxies with respect to the cluster. Nonetheless, at M_*_<2x10^11^M_{sun}_, the two populations are similar. The size-mass relation of cluster and field ellipticals at z~1.3 clearly defines two different regimes, above and below a transition mass m_t_~=2-3x10^10^M_{sun}_ at lower masses the relation is nearly flat (R_e_{prop}M*^-0.1+/-0.2^), the mean radius is nearly constant at ~1kpc and, consequently, {Sigma}_Re_~={Sigma}_1kpc_ while, at larger masses, the relation is R_e_{prop}M*^0.64+/-0.09^. The transition mass marks the mass at which galaxies reach the maximum stellar mass density. Also the {Sigma}_1kpc_-mass relation follows two different regimes, above and below the transition mass ({Sigma}_1kpc_{prop}M*_1.07<mt_^0.64>mt^) defining a transition mass density {Sigma}_1kpc_~=2-3x10^3^M_{sun}_/pc^2^. The effective stellar mass density {Sigma}_Re_ does not correlate with mass; dense/compact galaxies can be assembled over a wide mass regime, independently of the environment. The central stellar mass density, {Sigma}_1kpc_, besides being correlated with the mass, is correlated to the age of the stellar population: the higher the central stellar mass density, the higher the mass, the older the age of the stellar population. While we found some evidence of environmental effects on the elliptical galaxies as a population, we did not find differences between the intrinsic properties of cluster and field elliptical galaxies at comparable redshift. The structure and the shaping of elliptical galaxies at z~1.3 do not depend on the environment. However, a dense environment seems to be more efficient in assembling high-mass large ellipticals, much rarer in the field at this redshift. The correlation found between the central stellar mass density and the age of the galaxies beside the mass shows the close connection of the central regions to the main phases of mass growth.