- ID:
- ivo://CDS.VizieR/III/238
- Title:
- Synthetic spectra in the near-IR
- Short Name:
- III/238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a library of 952 synthetic spectra characterized by -2.5<=[Z/Z_sun_]<=+0.5, 4.5<=logg<=1.0, 3500<=T(eff)<=50000K, at a resolving power (lambda/Delta_lambda) of 20000 over the wavelength range 7650-8750{AA}. The wavelength range covers the near-IR Ca II triplet and the head of the hydrogen's Paschen series, the K I doublet (7664, 7699{AA}), the Na I doublet (8183, 8194{AA}) and the lines of Fe I multiplet N.60 at 8327 and 8388{AA}. The synthetic spectra are based on Kurucz's codes and line data.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/II/270
- Title:
- TCS-CAIN: NIR Survey of the Galactic plane
- Short Name:
- II/270
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe a deep multi-colour NIR survey (TCS-CAIN) that has been recently completed at the Instituto de Astrofisica de Canarias (Spain). The survey is of selected areas distributed along the Galactic plane and it goes deeper than 2MASS or DENIS. Its aim was to explore the large-scale structure of the Milky Way and the Galactic components, in particular the Galactic bar. This survey has about 10 million point-source detections in J, H, and Ks filters with a photometric accuracy of about 0.1mag in the three bands and a positional accuracy of about 0.2" (based on the 2MASS catalogue as the astrometric reference).
- ID:
- ivo://CDS.VizieR/J/ApJ/743/141
- Title:
- T dwarf companions around M, L, T dwarfs in IR
- Short Name:
- J/ApJ/743/141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10pc, mass range of 0.6 to ~0.05M_{sun}_). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5um]<=17.2mag for angular separations between about 7" and 165". Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100K brown dwarf companions at semimajor axes >~35AU and to detect 500-600 K companions at semimajor axes >~60AU. The simulations also estimate a 600-1100K T dwarf companion fraction of <3.4% for 35-1200AU separations and <12.4% for the 500-600K companions for 60-1000AU separations.
- ID:
- ivo://CDS.VizieR/J/AJ/126/2487
- Title:
- T dwarfs in the southern hemisphere
- Short Name:
- J/AJ/126/2487
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of three new southern hemisphere T dwarfs identified in the Two Micron All Sky Survey (Cat. <II/246>). These objects, 2MASS 0348-6022, 2MASS 0516-0445, and 2MASS 2228-4310, have classifications T7, T5.5, and T6.5, respectively. Using linear absolute magnitude/spectral type relations derived from T dwarfs with measured parallaxes, we estimate spectrophotometric distances for these discoveries; the closest, 2MASS 0348-6022, is likely within 10pc of the Sun. Proper motions and estimated tangential velocities are consistent with membership in the Galactic disk population. We also list southern hemisphere T dwarf candidates that were either not found in subsequent near-infrared imaging observations and are most likely uncataloged minor planets, or have near-infrared spectra consistent with background stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/892/31
- Title:
- Teff and metallicities of M dwarfs in APOGEE DR14
- Short Name:
- J/ApJ/892/31
- Date:
- 07 Mar 2022 13:23:27
- Publisher:
- CDS
- Description:
- M dwarfs have enormous potential for our understanding of structure and formation on both Galactic and exoplanetary scales through their properties and compositions. However, current atmosphere models have limited ability to reproduce spectral features in stars at the coolest temperatures (Teff<4200K) and to fully exploit the information content of current and upcoming large-scale spectroscopic surveys. Here we present a catalog of spectroscopic temperatures, metallicities, and spectral types for 5875 M dwarfs in the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Gaia-DR2 surveys using The Cannon (Ness+ 2015, J/ApJ/808/16 ; Casey+ 2016, arXiv:1603.03040; Ho+ 2017, J/ApJ/836/5; Behmard+ 2019ApJ...876...68B): a flexible, data-driven spectral-modeling and parameter-inference framework demonstrated to estimate stellar-parameter labels (Teff, logg, [Fe/H], and detailed abundances) to high precision. Using a training sample of 87 M dwarfs with optically derived labels spanning 2860K<Teff<4130K calibrated with bolometric temperatures, and -0.5<[Fe/H]<0.5dex calibrated with FGK binary metallicities, we train a two-parameter model with predictive accuracy (in cross-validation) to 77K and 0.09dex respectively. We also train a one-dimensional spectral classification model using 51 M dwarfs with Sloan Digital Sky Survey optical spectral types ranging from M0 to M6, to predictive accuracy of 0.7 types. We find Cannon temperatures to be in agreement to within 60 K compared to a subsample of 1702 sources with color-derived temperatures, and Cannon metallicities to be in agreement to within 0.08 dex metallicity compared to a subsample of 15 FGK+M or M+M binaries. Finally, our comparison between Cannon and APOGEE pipeline (ASPCAP DR14) labels finds that ASPCAP is systematically biased toward reporting higher temperatures and lower metallicities for M dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/851/26
- Title:
- Teff, metallicity and Ti abundance of M dwarfs
- Short Name:
- J/ApJ/851/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R~25000), Y-band (~1{mu}m) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60K, 0.1dex, and 0.05dex, respectively, and is calibrated for 3200K<Teff<4100K, -0.7<[Fe/H]<+0.3, and -0.05<[Ti/Fe]<+0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.
- ID:
- ivo://CDS.VizieR/J/A+A/449/583
- Title:
- Temperature effects on spectra of olivine particles
- Short Name:
- J/A+A/449/583
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The absorption spectra of the olivine particles of different Mg/Fe content were measured in the infrared spectral region between 5 and 100{mu}m, while the particles were continuously cooled down to 10K. Measurements independently carried out on different samples of synthetic forsterite, natural olivine, and synthetic fayalite at laboratories in Kyoto and Jena. The positions of the olivine infrared bands were measured for these samples in detail at up to seven individual temperatures in the interval between 300K and 10K. According to the different widths of the olivine bands in different wavelength regions, spectral resolutions of 2, 1, 0.5, 0.25, 0.2, and 0.125cm^-1^ were used in order to measure the band positions with high accuracy.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A66
- Title:
- TEXES spectra of Saturn from February 03 2013
- Short Name:
- J/A+A/653/A66
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The abundance of deuterium in giant planet atmospheres provides constraints on the reservoirs of ices incorporated into these worlds during their formation and evolution. Motivated by discrepancies in the measured deuterium-hydrogen ratio (D/H) on Jupiter and Saturn, we present a new measurement of the D/H ratio in methane for Saturn from ground-based measurements. We analysed a spectral cube (covering 1151-1160cm^-1^ from 6 February 2013) from the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF) where emission lines from both methane and deuterated methane are well resolved. Our estimate of the D/H ratio in stratospheric methane, 1.65(-0.21/+0.27)*10^-5^ is in agreement with results derived from Cassini CIRS and ISO/SWS observations, confirming the unexpectedly low CH3D abundance. Assuming a fractionation factor of 1.34(+/-0.19) we derive a hydrogen D/H of 1.23(-0.23/+0.27)*10^-5^. This value remains lower than previous tropospheric hydrogen D/H measurements of (i) Saturn 2.10(+/-0.13)*10^-5^, (ii) Jupiter 2.6(+/-0.7)*10^-5^ and (iii) the proto-solar hydrogen D/H of 2.1(+/-0.5)*10^-5^, suggesting that the fractionation factor may not be appropriate for stratospheric methane, or that the D/H ratio in Saturn's stratosphere is not representative of the bulk of the planet.
- ID:
- ivo://CDS.VizieR/J/ApJS/244/25
- Title:
- The BAaDE SiO maser survey at 86GHz with ALMA
- Short Name:
- J/ApJS/244/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the first 1432 sources observed using the Atacama Large Millimeter/submillimeter Array, from the Bulge Asymmetries and Dynamical Evolution survey, which aims to obtain tens of thousands of line-of-sight velocities from SiO masers in Asymptotic Giant Branch (AGB) stars in the Milky Way. A 71% detection rate of 86GHz SiO masers is obtained from the infrared color-selected sample and increases to 80% when considering the likely oxygen-rich stars using Midcourse Space Experiment colors isolated in a region where [D]-[E]<=1.38. Based on Galactic distributions, the presence of extended CS emission, and likely kinematic associations, the population of sources with [D]-[E]>1.38 probably consists of young stellar objects, or alternatively, of planetary nebulae. For the SiO detections, we examined whether individual SiO transitions provide comparable stellar line-of-sight velocities and found that any SiO transition is suitable for determining a stellar AGB line-of-sight velocity. Finally, we discuss the relative SiO detection rates and line strengths in the context of current pumping models.
- ID:
- ivo://CDS.VizieR/II/363
- Title:
- The band-merged unWISE Catalog
- Short Name:
- II/363
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the unWISE Catalog, containing the positions and fluxes of roughly 2 billion objects observed by the Wide-field Infrared Survey Explorer (WISE) over the full sky. The unWISE Catalog has two advantages over the existing WISE catalog (AllWISE): first, it is based on significantly deeper imaging, and second, it features improved modeling of crowded regions. The deeper imaging used in the unWISE Catalog comes from the coaddition of all publicly available 3-5um WISE imaging, including that from the ongoing NEOWISE-reactivation mission, thereby increasing the total exposure time by a factor of 5 relative to AllWISE. At these depths, even at high Galactic latitudes, many sources are blended with their neighbors; accordingly, the unWISE analysis simultaneously fits thousands of sources to obtain accurate photometry. Our new catalog detects sources roughly 0.7mag fainter than the AllWISE catalog at 5{sigma}, and more accurately models millions of faint sources in the Galactic plane, enabling a wealth of Galactic and extragalactic science. In particular, relative to AllWISE, unWISE doubles the number of galaxies detected between redshifts 0 and 1 and triples the number between redshifts 1 and 2, cataloging more than half a billion galaxies over the whole sky.