- ID:
- ivo://CDS.VizieR/J/ApJS/216/17
- Title:
- AKARI 2.5-5um spectra of nearby Type-1 AGNs
- Short Name:
- J/ApJS/216/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 2.5-5.0{mu}m spectra of 83 nearby (0.002<z<0.48) and bright (K<14mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0{mu}m spectral region contains emission lines such as Br{beta} (2.63{mu}m), Br{alpha} (4.05{mu}m), and polycyclic aromatic hydrocarbons (3.3{mu}m), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ~1100K and ~220K, respectively, rather than the commonly cited hot dust temperature of 1500K.
Number of results to display per page
Search Results
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Metadata
- Title:
- AllWISE Atlas Metadata Table
- Short Name:
- AllWISE Metadata
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Atlas Metadata Table contains brief descriptions of all metadata information that is relevant to the production of the Atlas images and Source Catalog. The table contains the (RA, DEC) of the center of the Tile. Much of the information in this table is processing-specific and may not be of interest to general users (e.g., flags indicating whether frames have been processed successfully or not, and the date and time of the start of the pipeline processing, etc.). The metadata table also contains some characterization and derived statistics of the coadd image Tile, basic photometric parameters used for photometry and derived statistics for extracted sources and artifacts.
- ID:
- ivo://CDS.VizieR/J/MNRAS/473/4937
- Title:
- AllWISE ctp to ROSAT/2RXS & XMMSLEW2 catalogs
- Short Name:
- J/MNRAS/473/4937
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We release the AllWISE counterparts and Gaia matches to 106573 and 17665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b|>15{deg}. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of 94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool. See for all the options the Nway manual at https://github.com/JohannesBuchner/nway/raw/master/doc/nway-manual.pdf
- ID:
- ivo://CDS.VizieR/II/328
- Title:
- AllWISE Data Release
- Short Name:
- II/328
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Wide-field Infrared Survey Explorer (WISE; see Wright et al. 2010AJ....140.1868W) is a NASA Medium Class Explorer mission that conducted a digital imaging survey of the entire sky in the 3.4, 4.6, 12 and 22um mid-infrared bandpasses (hereafter W1, W2, W3 and W4). The AllWISE program extends the work of the successful Wide-field Infrared Survey Explorer mission by combining data from the cryogenic and post-cryogenic survey phases to form the most comprehensive view of the mid-infrared sky currently available. AllWISE has produced a new Source Catalog and Image Atlas with enhanced sensitivity and accuracy compared with earlier WISE data releases. Advanced data processing for AllWISE exploits the two complete sky coverages to measure source motions for each Catalog source, and to compile a massive database of light curves for those objects.
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Multiepoch
- Title:
- AllWISE Multiepoch Photometry Table
- Short Name:
- AllWISE MEP
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Multiepoch Photometry (MEP) Database is a compendium of time-tagged fluxes measured on the individual Single-exposure image sets forced at the position of each deep source extraction that is in the AllWISE Source Catalog and Reject Table.
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Reject
- Title:
- AllWISE Reject Table
- Short Name:
- AllWISE Reject
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Reject Table contains the source extractions that do not meet the uniqueness and/or reliability criteria required for inclusion in the Source Catalog.
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Source_Catalog
- Title:
- AllWISE Source Catalog
- Short Name:
- AllWISE
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Source Catalog contains accurate positions, apparent motion measurements, four-band fluxes and flux variability statistics for over 747 million objects detected on the coadded Atlas Images.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A115
- Title:
- ALMA and NACO observations towards V1400 Cen
- Short Name:
- J/A+A/633/A115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Our aim was to directly detect the thermal emission of the putative exoring system responsible for the complex deep transits observed in the light curve for the young Sco-Cen star 1SWASP J140747.93-394542.6 (V1400 Cen, hereafter J1407), confirming it as the occulter seen in May 2007, and to determine its orbital parameters with respect to the star. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the field centred on J1407 in the 340GHz (Band 7) continuum in order to determine the flux and astrometric location of the ring system relative to the star. We used the VLT/NACO camera to observe the J1407 system in March 2019 and to search for the central planetary mass object at thermal infrared wavelengths. We detect no point source at the expected location of J1407, and derive an upper limit 3{sigma} level of 57.6uJy. There is a point source detected at an angular separation consistent with the expected location for a free-floating ring system that occulted J1407 in May 2007, with a flux of 89uJy consistent with optically thin dust surrounding a massive substellar companion. At 3.8 microns with the NACO camera, we detect the star J1407 but no other additional point sources within 1.3 arcseconds of the star, with a lower bound on the sensitivity of 6MJup at the location of the ALMA source, and down to 4MJup in the sky background limit. The ALMA upper limit at the location of J1407 implies that a hypothesised bound ring system is composed of dust smaller than 1 mm in size, implying a young ring structure. The detected ALMA source has multiple interpretations, including: (i) it is an unbound substellar object surrounded by warm dust in Sco-Cen with an upper mass limit of 6M_Jup_, or (ii) it is a background galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/627/L6
- Title:
- ALMA Long Baseline maps of G17.64+0.16
- Short Name:
- J/A+A/627/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the highest angular resolution (20x15mas - 44x33au) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations currently possible of the proto-O-star G17.64+0.16 in Band 6. The Cycle 5 observations with baselines out to 16 km probes scales <50au and reveal the rotating disc around G17.64+0.16, a massive forming O-type star. The disc has a ring-like enhancement in the dust emission, especially visible as arc structures to the north and south. The Keplerian kinematics are most prominently seen in the vibrationally excited water line, H_2_O (Eu=3461.9K). The mass of the central source found by modelling the Keplerian rotation is consistent with 45+/-10M_{sun}_. The H30alpha (231.9GHz) radio-recombination line and the SiO (5-4) molecular line were detected at up to the 10-sigma level. The estimated disc mass is 0.6-2.6M_{sun}_ under the optically thin assumption. Analysis of the Toomre Q parameter, in the optically thin regime, indicates that the disc stability is highly dependent on temperature. The disc currently appears stable for temperatures >150K, this does not preclude that the substructures formed earlier through disc fragmentation.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A31
- Title:
- ALMA maps of G17.64+0.16
- Short Name:
- J/A+A/620/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high angular resolution (~0.2") continuum and molecular emission line Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of G17.64+0.16 in Band 6 (220-230GHz) taken as part of a campaign in search of circumstellar discs around (proto)-O-stars. At a resolution of ~400au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. We detect SiO (5-4) emission that is marginally resolved and elongated in a direction perpendicular to the large-scale outflow seen in the ^13^CO (2-1) line using the main ALMA array in conjunction with the Atacama Compact Array (ACA). Morphologically, the SiO appears to represent a disc-like structure. Using parametric models we show that the position-velocity profile of the SiO is consistent with the Keplerian rotation of a disc around an object between 10-30M_{sun}_ in mass, only if there is also radial expansion from a separate structure. The radial motion component can be interpreted as a disc wind from the disc surface. Models with a central stellar object mass between 20 and 30M_{sun}_ are the most consistent with the stellar luminosity 1x10^5^L_{sun}_) and indicative of an O-type star. The H30{alpha} millimetre recombination line (231.9GHz) is also detected, but spatially unresolved, and is indicative of a very compact, hot, ionised region co-spatial with the dust continuum core. The broad line-width of the H30{alpha} emission (Full-Width-Half-Maximum=81.9km/s is not dominated by pressure-broadening but is consistent with underlying bulk motions. These velocities match those required for shocks to release silicon from dust grains into the gas phase. CH_3_CN and CH_3_OH thermal emission also shows two arc shaped plumes that curve away from the disc plane. Their coincidence with OH maser emission suggests that they could trace the inner working surfaces of a wide-angle wind driven by G17.64 which impacts the diffuse remnant natal cloud before being redirected into the large-scale outflow direction. Accounting for all observables, we suggest that G17.64 is consistent with a O-type young stellar object in the final stages of protostellar assembly, driving a wind, but that has not yet developed into a compact HII region. The existence and detection of the disc in G17.64 is likely related to its isolated and possibly more evolved nature, traits which may underpin discs in similar sources.