Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/248/18
- Title:
- 44 and 95GHz observations of class I methanol masers
- Short Name:
- J/ApJS/248/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a simultaneous 44 and 95GHz class I methanol maser survey toward 144 sources from the 95GHz class I methanol maser catalog. The observations were made with the three telescopes of the Korean very long baseline interferometry network operating in single-dish mode. The detection rates are 89% at 44GHz and 77% at 95GHz. There are 106 new discoveries at 44GHz. Comparing the previous 95GHz detections with new observations of the same transitions made using the Purple Mountain Observatory 13.7m radio telescope shows no clear evidence of variability on a timescale of six years. Emission from the 44 and 95GHz transitions shows strong correlations in peak velocity, peak flux density, and integrated flux density, indicating that they are likely cospatial. We found that the peak flux density ratio S_pk,95_/S_pk,44_ decreases as the 44GHz peak flux density increases. We found that some class I methanol masers in our sample might be associated with infrared dark clouds, while others are associated with HII regions, indicating that some sources occur at an early stage of high-mass star formation, while others are located toward more evolved sources.
- ID:
- ivo://CDS.VizieR/J/A+A/490/213
- Title:
- 1.4 and 3.4mm interferometry of W3 IRS5
- Short Name:
- J/A+A/490/213
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of PdBI 1.4 and 3.4mm interferometric observations of the high-mass star-forming region W3 IRS5 in the AB configurations. From the continuum maps we identified five individual sources with counterparts in the NIR, MIR or radio (Q-band), except for one source that is a new identification. Three of the sources are within the inner 2100AU, where the protostellar number density exceeds 10^6^ protostars pc^-3^ assuming spherical symmetry. Lower limits for the circumstellar masses of the sources range from ~0.3 to ~40M_{sun}_ although they were strongly affected by the spatial filtering of the interferometer. We mapped the SiO(2-1), SiO(5-4), SO2(22-22), and SO2(8-9) molecular transitions. We identify five molecular outflows in SiO, two of them nearly in the line of sight direction. The SO2 velocity structure indicates a rotating, bound system, and we find tentative signatures of converging flows as predicted by the gravoturbulent star formation and converging flow theories. The obtained data strongly indicate that the clustered environment has a major influence on the formation of high-mass stars; however, our data do not clearly allow us to distinguish whether the ongoing star-forming process follows a monolithic collapse or a competitive accretion mechanism.
- ID:
- ivo://CDS.VizieR/J/A+A/608/A102
- Title:
- APEX CO and HI observations of Lupus I
- Short Name:
- J/A+A/608/A102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Lupus I cloud is found between the Upper Scorpius (USco) and Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco HI shell appears to interact with a bubble currently driven by the winds of the remaining B stars of UCL. Aims. We investigate whether the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. We performed APEX ^13^CO(2-1)and C^18^O(2-1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS HI survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. We present evidence that the molecular gas of Lupus Iis tightly linked to the atomic material of the USco shell. The CO emission in Lupus Iis found mainly at velocities between v_LSR_=3-6km/s, which is in the same range as the HI velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic HI shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The nonthermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario in which Lupus Iis located in the interaction zone between the USco shell and the UCL wind bubble. The kinematics observations are consistent with a scenario in which the Lupus Icloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counterpressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.
- ID:
- ivo://CDS.VizieR/III/284
- Title:
- APOGEE-2 data from DR16
- Short Name:
- III/284
- Date:
- 05 Jan 2022
- Publisher:
- CDS
- Description:
- The spectral analysis and data products in Data Release 16 (DR16; 2019 December) from the high-resolution near-infrared Apache Point Observatory Galactic Evolution Experiment (APOGEE)-2/Sloan Digital Sky Survey (SDSS)-IV survey are described. Compared to the previous APOGEE data release (DR14; 2017 July), APOGEE DR16 includes about 200000 new stellar spectra, of which 100000 are from a new southern APOGEE instrument mounted on the 2.5m du Pont telescope at Las Campanas Observatory in Chile. DR16 includes all data taken up to 2018 August, including data released in previous data releases. All of the data have been re-reduced and re-analyzed using the latest pipelines, resulting in a total of 473307 spectra of 437445 stars. Changes to the analysis methods for this release include, but are not limited to, the use of MARCS model atmospheres for calculation of the entire main grid of synthetic spectra used in the analysis, a new method for filling "holes" in the grids due to unconverged model atmospheres, and a new scheme for continuum normalization. Abundances of the neutron-capture element Ce are included for the first time. A new scheme for estimating uncertainties of the derived quantities using stars with multiple observations has been applied, and calibrated values of surface gravities for dwarf stars are now supplied. Compared to DR14, the radial velocities derived for this release more closely match those in the Gaia DR2 database, and a clear improvement in the spectral analysis of the coolest giants can be seen.
- ID:
- ivo://CDS.VizieR/J/A+A/612/A98
- Title:
- APOGEE full information on classes
- Short Name:
- J/A+A/612/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. We apply the K-means algorithm to 153,847 high resolution spectra (R~22,500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data.
- ID:
- ivo://CDS.VizieR/J/AJ/159/182
- Title:
- APOGEE Net, YSOs parameters through deep learning
- Short Name:
- J/AJ/159/182
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Machine learning allows for efficient extraction of physical properties from stellar spectra that have been obtained by large surveys. The viability of machine-learning approaches has been demonstrated for spectra covering a variety of wavelengths and spectral resolutions, but most often for main-sequence (MS) or evolved stars, where reliable synthetic spectra provide labels and data for training. Spectral models of young stellar objects (YSOs) and low-mass MS stars are less well-matched to their empirical counterparts, however, posing barriers to previous approaches to classify spectra of such stars. In this work, we generate labels for YSOs and low-mass MS stars through their photometry. We then use these labels to train a deep convolutional neural network to predict logg, Teff, and Fe/H for stars with Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra in the DR14 data set. This "APOGEE Net" has produced reliable predictions of logg for YSOs, with uncertainties of within 0.1dex and a good agreement with the structure indicated by pre-MS evolutionary tracks, and it correlates well with independently derived stellar radii. These values will be useful for studying pre-MS stellar populations to accurately diagnose membership and ages.
- ID:
- ivo://CDS.VizieR/J/ApJ/894/5
- Title:
- APOGEE2-N NIR spectra of B-type stars
- Short Name:
- J/ApJ/894/5
- Date:
- 19 Jan 2022 00:59:33
- Publisher:
- CDS
- Description:
- We present a semi-empirical spectral classification scheme for normal B-type stars using near-infrared (NIR) spectra (1.5-1.7{mu}m) from the Sloan Digital Sky Survey Apache Point Observatory Galaxy Evolution Experiment (APOGEE2)-N data release 14 (DR14) database. The main motivation for working with B-type stars is their importance in the evolution of young stellar clusters; however, we also take advantage of having a numerous sample (316 stars) of B-type star candidates in APOGEE2-N, for which we also have optical (3600-9100{AA}) counterparts from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey. By first obtaining an accurate spectral classification of the sources using the LAMOST DR3 spectra and the canonical spectral classification scheme, we found a linear relation between optical spectral types and the equivalent widths of the hydrogen lines of the Brackett series in the APOGEE2-N NIR spectra. This relation extends smoothly from a similar relation for O and early B stars found by Roman-Lopes+ (2018, J/ApJ/855/68). This way, we obtain a catalog of B-type sources with features in both the optical and NIR and a classification scheme refined down to one spectral subclass.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/55
- Title:
- APOGEE parameters through 83 open clusters
- Short Name:
- J/ApJ/903/55
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- The chemical homogeneity of surviving stellar clusters contains important clues about interstellar medium (ISM) mixing efficiency, star formation, and the enrichment history of the Galaxy. Existing measurements in a handful of open clusters suggest homogeneity in several elements at the 0.03dex level. Here we present (I) a new cluster member catalog based only on APOGEE radial velocities and Gaia-DR2 proper motions, (II) improved abundance uncertainties for APOGEE cluster members, and (III) the dependence of cluster homogeneity on Galactic and cluster properties, using abundances of eight elements from the APOGEE survey for 10 high-quality clusters. We find that cluster homogeneity is uncorrelated with Galactocentric distance, |Z|, age, and metallicity. However, velocity dispersion, which is a proxy for cluster mass, is positively correlated with intrinsic scatter at relatively high levels of significance for [Ca/Fe] and [Mg/Fe]. We also see a possible positive correlation at a low level of significance for [Ni/Fe], [Si/Fe], [Al/Fe], and [Fe/H], while [Cr/Fe] and [Mn/Fe] are uncorrelated. The elements that show a correlation with velocity dispersion are those that are predominantly produced by core-collapse supernovae (CCSNe). However, the small sample size and relatively low correlation significance highlight the need for follow-up studies. If borne out by future studies, these findings would suggest a quantitative difference between the correlation lengths of elements produced predominantly by Type Ia SNe versus CCSNe, which would have implications for Galactic chemical evolution models and the feasibility of chemical tagging.
- ID:
- ivo://CDS.VizieR/J/MNRAS/505/6051
- Title:
- Arecibo sample variability properties
- Short Name:
- J/MNRAS/505/6051
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present the results of a near-infrared (NIR) monitoring program carried out between 1999 and 2005 to determine the variability properties of the `Arecibo sample of OH/IR stars'. The sample consists of 385 IRAS-selected Asymptotic Giant Branch (AGB) candidates, for which their O-rich chemistry has been proven by the detection of 1612 MHz OH maser emission. The monitoring data was complemented by data collected from public optical and NIR surveys. We fitted the light curves obtained in the optical and NIR bands with a model using an asymmetric cosine function, and derived a period for 345 sources ~90% of the sample). Based on their variability properties, most of the Arecibo sources are classified as long-period large-amplitude variable stars (LPLAV), 4% as (candidate) post-AGB stars, and 3% remain unclassified although they are likely post-AGB stars or highly obscured AGB stars. The period distribution of the LPLAVs peaks at ~400d, with periods between 300 and 800d for most of the sources, and has a long tail up to ~2100d. Typically, the amplitudes are between 1 and 3 mag in the NIR and between 2 and 6 mag in the optical. We find correlations between periods and amplitudes, with larger amplitudes associated to longer periods, as well as between the period and the infrared colours, with the longer periods linked to the redder sources. Among the post-AGB stars, the light curve of IRAS 19566+3423 was exceptional, showing a large systematic increase (>0.4mag/yr) in K-band brightness over 7 years.