- ID:
- ivo://CDS.VizieR/J/A+A/632/A12
- Title:
- NGC 891 and NGC 4565 radio images
- Short Name:
- J/A+A/632/A12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cosmic-ray electrons (CREs) originating from the star-forming discs of spiral galaxies frequently form extended radio haloes that are best observable in edge-on galaxies, where their properties can be directly investigated as a function of vertical height above the disc. For the present study, we selected two nearby edge-on galaxies from the Continuum Halos in Nearby Galaxies - an EVLA Survey (CHANG-ES), NGC 891 and 4565, which differ largely in their detectable halo extent and their star- formation rates (SFRs). Our aim is to figure out how such differences are related to the (advective and/or diffusive) CRE transport in the disc and in the halo. We use wide-band 1.5 and 6GHz Very Large Array (VLA) observations obtained in the B, C, and D configurations, and combine the 6GHz images with Effelsberg observations to correct for missing short spacings. After subtraction of the thermal emission, we investigate the spatially resolved synchrotron spectral index distribution in terms of CRE spectral ageing. We further compute total magnetic field strengths assuming equipartition between the cosmic-ray (CR) energy density and the magnetic field, and measure synchrotron scale heights at both frequencies. Based on the fitted vertical profiles of the synchrotron intensity and on the spectral index profile between 1.5 and 6GHz, we create purely advective and purely diffusive CRE transport models by numerically solving the 1D diffusion-loss equation. In particular, we investigate for the first time the radial dependence of synchrotron and magnetic field scale heights, advection speeds, and diffusion coefficients, whereas previous studies of these two galaxies only determined global values of these quantities.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/623/A33
- Title:
- NGC 4666 polarization maps
- Short Name:
- J/A+A/623/A33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The observation of total and linearly polarized synchrotron radiation of spiral galaxies in the radio continuum reveals the distribution and structure of their magnetic fields. By observing these, information about the proposed dynamo processes that preserve the large-scale magnetic fields in spiral galaxies can be gained. Additionally, by analyzing the synchrotron intensity, the transport processes of cosmic rays into the halo of edge-on spiral galaxies can be investigated. We analyze the magnetic field geometry and the transport processes of the cosmic rays of the edge-on spiral starburst galaxy NGC 4666 from CHANG-ES radio data in two frequencies; 6 GHz (C-band) and 1.5 GHz (L-band). Supplementary X-ray data are used to investigate the hot gas in NGC 4666. We determine the radio scale heights of total power emission at both frequencies for this galaxy. We show the magnetic field orientations derived from the polarization data. Using rotation measure (RM) synthesis we further study the behavior of the RM values along the disk in C-band to investigate the large-scale magnetic-field pattern. We use the revised equipartition formula to calculate a map of the magnetic field strength. Furthermore, we model the processes of cosmic-ray transport into the halo with the 1D SPINNAKER model. The extended radio halo of NGC 4666 is box-shaped and is probably produced by the previously observed supernova-driven superwind. This is supported by our finding of an advective cosmic-ray transport such as that expected for a galactic wind. The scaleheight analysis revealed an asymmetric halo above and below the disk as well as between the two sides of the major axis. A central point source as well as a bubble structure is seen in the radio data for the first time. Our X-ray data show a box-shaped hot halo around NGC 4666 and furthermore confirm the AGN nature of the central source. NGC 4666 has a large-scale X-shaped magnetic field in the halo, as has been observed in other edge-on galaxies. The analysis furthermore revealed that the disk of NGC 4666 shows hints of field reversals along its radius, which is the first detection of this phenomenon in an external galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A13
- Title:
- NGC 4013 radio and polarization maps
- Short Name:
- J/A+A/632/A13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From the Continuum HAloes in Nearby Galaxies - an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA), observed in two frequency bands, 6GHz (C-band) and 1.5GHz (L-band), we present the radio maps, including polarization of the edge-on spiral galaxy NGC 4013. Supplemantary X-ray data are also presented here. The central point source of NGC 4013 dominates the radio continuum emission in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint. Diffusion is the dominating transport process up to heights of 1-2kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6{mu}G is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6kpc. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with spinnaker, and the low temperature of the X-ray emitting hot gas.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A111
- Title:
- NGC 4217 radio and polarization maps
- Short Name:
- J/A+A/639/A111
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the radio continuum halo, the magnetic field, and the transport processes of the CRs of the edge-on spiral galaxy NGC 4217 using Continuum HAlos in Nearby Galaxies - an Evla Survey (CHANG-ES) radio data at two frequencies, 6GHz (C-band) and 1.5GHz (L-band), and supplemental LOFAR data of this galaxy at 150MHz. With additional X-ray Chandra data, we study the connection of radio features to the diffuse hot gas around NGC 4217. NGC 4217 shows a large-scale X-shaped magnetic field structure, covering a major part of the galaxy with a mean total magnetic field strength in the disk of 9G. From the analysis of the rotation measure map at C-band, we found that the direction of the disk magnetic field is pointing inward. A helical outflow structure is furthermore present in the northwestern part of the galaxy, which is extended nearly 7 kpc into the halo. More polarized emission is observed on the approaching side of the galaxy, indicating that Faraday depolarization has to be considered at C-band. With a simplified galaxy disk model, we are able to explain the finding of higher polarized intensity on the approaching side. We generalize the model to predict that roughly 75% of edge-on spiral galaxies will show higher polarized intensity on the approaching side. Many loop and shell structures are found throughout the galaxy in total intensity at C-band. One structure, a symmetric off-center (to the southwest of the disk) superbubble-like structure is prominent in total and polarized intensity, as well as in Halpha and optical dust filaments. This is at a location where a second peak of total intensity (to the southwest of the disk) is observed, making this superbubble-like structure a possible result of a concentrated star formation region in the disk. The X-ray diffuse emission shows similarities to the polarized diffuse emission of NGC 4217. The flux density extension of the radio continuum halo increases toward lower frequencies. While the total flux density of the disk and halo are comparable at C-band, the contribution of the disk flux density decreases toward LOFAR to 18% of the total flux density. Dumbbell-shaped structures are present at C-band and at the LOFAR frequency. Total intensity profiles at the two CHANG-ES bands and the LOFAR frequency show a clear two-component behavior and were fit best with a two-component exponential fit. The halo scale heights are 1.10+/-0.04kpc, 1.43+/-0.09kpc, and 1.55+/-0.04kpc in C-band, L-band, and 150MHz, respectively. The frequency dependence of these scale heights between C-band and L-band suggests advection to be the main transport process. The 1D CRE transport modeling shows that advection appears to be more important than diffusion.
- ID:
- ivo://CDS.VizieR/J/other/RMxAA/56.139
- Title:
- On the evolution of angular momentum
- Short Name:
- J/other/RMxAA/56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Selecting the best quality data, I find that nearly all 0.5 to 1.2M_{sun}_ main sequence stars converge to a single rotational mass dependent sequence after 750Myr; when the mass is larger than 0.8M_{sun}_, most of them converge in ~120Myr. If stars rotate as rigid bodies, the angular momentum of the vast majority is within clearly outlined bounds. The lower boundary defines a terminal main sequence rotational isochrone, the upper one coincides with slow rotators from the Pleiades and stars from Praesepe delineate a third one. Mass dependent exponential relationships between angular momentum and age are determined from these isochrones. Age estimates based on the angular momentum, are acceptable in middle aged stars older than 750Myr and more massive than 0.6-0.7M_{sun}_. The evolution of the Rossby number indicates that the Parker dynamo may cease early on in stars where M/M_{sun}_>=1.1. An empirical formula for the torque, an idealized model for it and a relation between rotational period and magnetic field, lead to a formula for the evolution of the mass loss rate, predicting that the present solar rate is close to a minimum and that it was around five times more vigorous when life on Earth started.
- ID:
- ivo://CDS.VizieR/J/A+A/572/A69
- Title:
- Opacities of magnetized neutron stars
- Short Name:
- J/A+A/572/A69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- There is observational evidence that central compact objects (CCOs) in supernova remnants have moderately strong magnetic fields B~10^11^G. Meanwhile, available models of partially ionized hydrogen atmospheres of neutron stars with strong magnetic fields are restricted to B>~10^12^G. Extension of the applicability range of the photosphere models to lower field strengths is complicated by a stronger asymmetry of decentered atomic states and by the importance of excited bound states. We extend the equation of state and radiative opacities, as presented in previous papers for 10^12^G<~B<~10^15^G, to weaker fields. We constructed analytical fitting formulae for binding energies, sizes, and oscillator strengths for different bound states of a hydrogen atom moving in moderately strong magnetic fields and calculate an extensive database for photoionization cross sections of such atoms. Using these atomic data, in the framework of the chemical picture of plasmas we solved the ionization equilibrium problem and calculated thermodynamic functions and basic opacities of partially ionized hydrogen plasmas at these field strengths. Then plasma polarizabilities were calculated from the Kramers-Kronig relation, and the radiative transfer equation for the coupled normal polarization modes was solved to obtain model spectra. An equation of state and radiative opacities for a partially ionized hydrogen plasma are obtained at magnetic fields B, temperatures T, and densities {rho} typical for atmospheres of CCOs and other isolated neutron stars with moderately strong magnetic fields. The first- and second-order thermodynamic functions, monochromatic radiative opacities, and Rosseland mean opacities are calculated and tabulated, considering partial ionization, for 3x10^10G<~B<~10^12^G, 10^5^K<~T<~10^7^K, and a wide range of densities. Atmosphere models and spectra are calculated to verify the applicability of the results and to determine the range of magnetic fields and effective temperatures where the incomplete ionization of the hydrogen plasma is important.
- ID:
- ivo://CDS.VizieR/J/other/AstBu/74.55
- Title:
- Ori OB1 CP stars magnetic fields. III.
- Short Name:
- J/other/AstBu/74
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The paper presents results of magnetic field measurements of 10 chemically peculiar stars of subgroup (a) in the Orion OB1 association: HD33917, HD34859, HD35008, HD35039, HD35177, HD35575, HD35730, HD36549, HD38912, and HD294046. Observations were carried out with the circular polarization analyzer at the Main Stellar Spectrograph at the 6-m SAO RAS telescope.Magnetic fields were detected in four stars, six stars have magnetic fields below the detection threshold.
- ID:
- ivo://CDS.VizieR/J/other/AstBu/76.163
- Title:
- Ori OB1 CP stars magnetic fields. V.
- Short Name:
- J/other/AstBu/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The paper presents the results of magnetic field measurements of 27 chemically peculiar stars in subgroups (c) and (d) of the Orion OB1 association. In total, more than 140 circularly polarized spectra were obtained and measured in the period from 2013 to 2020. An analysis of the results showed that 13 out of 24 CP stars in subgroup (c) have a magnetic field. At the same time, no field of a significant strength was found in any of the three CP stars in subgroup (d). We found that the occurrence of magnetic stars in subgroup (c), whose average age is approximately 5Myr, lies in the middle between the occurrence of magnetic stars in subgroups (a) with an age of 10 Myr and (b), whose age is about 2Myr. Our results indicate a sharp decrease in the occurrence of magnetic CP stars and a simultaneous decrease in their magnetic field with age. The data obtained with the example of the Orion OB1 association generally support the theory of the fossil origin of the magnetic field of chemically peculiar stars; however, the process of the field formation itself can have a number of features manifesting observationally.
- ID:
- ivo://CDS.VizieR/J/other/AstBu/76.39
- Title:
- Ori OB1 CP stars magnetic fields. V.
- Short Name:
- J/other/AstBu/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The paper presents magnetic field measurements for 15 chemically peculiar (CP) stars of subgroup 1b in the Orion OB1 association. We have found that the proportion of stars with strong magnetic fields among these 15 CP stars is almost twice as large as in subgroup 1a. Along with this, the age of subgroup 1b is estimated as 2Myr, and the age of subgroup 1a is in the order of 10Myr. The average root-mean-square magnetic field <Be> (all) for stars in subgroup 1b is 2.3 times higher than that for stars in subgroup 1a. The conclusions obtained fall within the concept of the fossil origin of large-scale magnetic fields in B and A stars, but the rate of field weakening with age appears anomalously high. We present our results as an important observational test for calibrating the theory of stellar magnetic field formation and evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/834/207
- Title:
- Periodicity & magnitude of Kepler LCs variation
- Short Name:
- J/ApJ/834/207
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star's surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in our sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.