- ID:
- ivo://cxc.harvard.edu/csc.siap
- Title:
- Chandra Source Catalog
- Short Name:
- CSC
- Date:
- 24 Oct 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.0 of the catalog includes 317,167 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2014. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: http://cxc.harvard.edu/ for general Chandra information; http://cxc.harvard.edu/cda/ for the Chandra Data Archive; http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
Number of results to display per page
Search Results
- ID:
- ivo://cxc.harvard.edu/cscr2.siap
- Title:
- Chandra Source Catalog Release 2
- Short Name:
- CSCR2
- Date:
- 24 Oct 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.0 of the catalog includes 317,167 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2014. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: http://cxc.harvard.edu/ for general Chandra information; http://cxc.harvard.edu/cda/ for the Chandra Data Archive; http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cscr1
- Title:
- Chandra Source Catalog Release 1
- Short Name:
- CSCR1
- Date:
- 24 Oct 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory and one of NASA"s Great Observatories. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 1.1 of the catalog includes about 138,000 point and compact sources with observed spatial extents less than ~30 arcsec detected in a subset of ACIS and HRC-I imaging observations released publicly prior to the end of 2009. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: http://cxc.harvard.edu/ for general Chandra information; http://cxc.harvard.edu/cda/ for the Chandra Data Archive; http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cscr1.siap
- Title:
- Chandra Source Catalog Release 1
- Short Name:
- CSCR1
- Date:
- 24 Oct 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 1.1 of the catalog includes about 138,000 point and compact sources with observed spatial extents less than ~30 arcsec detected in a subset of ACIS and HRC-I imaging observations released publicly prior to the end of 2009. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: http://cxc.harvard.edu/ for general Chandra information; http://cxc.harvard.edu/cda/ for the Chandra Data Archive; http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cscr2
- Title:
- Chandra Source Catalog Release 2
- Short Name:
- CSCR2
- Date:
- 24 Oct 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory and one of NASA"s Great Observatories. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.0 of the catalog includes 317,167 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2014. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: http://cxc.harvard.edu/ for general Chandra information; http://cxc.harvard.edu/cda/ for the Chandra Data Archive; http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://CDS.VizieR/J/A+A/655/A109
- Title:
- Chandra view of the LX-LUV relation in quasars
- Short Name:
- J/A+A/655/A109
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present a study of the relation between X-rays and ultraviolet emission in quasars for a sample of broad-line, radio-quiet objects obtained from the cross-match of the Sloan Digital Sky Survey DR14 with the latest Chandra Source Catalog 2.0 (2332 quasars) and the Chandra COSMOS Legacy survey (273 quasars). The non-linear relation between the ultraviolet (at 2500{AA}, LUV) and the X-ray (at 2keV, LX) emission in quasars has been proved to be characterised by a smaller intrinsic dispersion than the observed one, as long as a homogeneous selection, aimed at preventing the inclusion of contaminants in the sample, is fulfilled. By leveraging on the low background of Chandra, we performed a complete spectral analysis of all the data available for the SDSS-CSC2.0 quasar sample (i.e. 3430 X-ray observations), with the main goal of reducing the uncertainties on the source properties (e.g. flux, spectral slope). We analysed whether any evolution of the LX-LUV relation exists by dividing the sample in narrow redshift intervals across the redshift range spanned by our sample, z~=0.5-4. We find that the slope of the relation does not evolve with redshift and it is consistent with the literature value of 0.6 over the explored redshift range, implying that the mechanism underlying the coupling of the accretion disc and hot corona is the same at the different cosmic epochs. We also find that the dispersion decreases when examining the highest redshifts, where only pointed observations are available. These results further confirm that quasars are 'standardisable candles', that is we can reliably measure cosmological distances at high redshifts where very few cosmological probes are available.
- ID:
- ivo://CDS.VizieR/J/ApJ/746/54
- Title:
- Chandra X-ray observations of SDSS-DR5 QSOs
- Short Name:
- J/ApJ/746/54
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze the X-ray variability of 264 Sloan Digital Sky Survey spectroscopic quasars using the Chandra public archive. This data set consists of quasars with spectroscopic redshifts out to z {approx} 5 and covers rest-frame timescales up to {Delta}t_sys_{approx} 2000 days, with three or more X-ray observations available for 82 quasars. It therefore samples longer timescales and higher luminosities than previous large-scale analyses of active galactic nucleus (AGN) variability. We find significant ( >~ 3{sigma}) variation in {approx}30% of the quasars overall; the fraction of sources with detected variability increases strongly with the number of available source counts up to {approx}70% for sources with >= 1000 counts per epoch. Assuming that the distribution of fractional variation is Gaussian, its standard deviation is {approx}16% on >~ 1 week timescales, which is not enough to explain the observed scatter in quasar X-ray-to-optical flux ratios as being due to variability alone. We find no evidence in our sample that quasars are more variable at higher redshifts (z > 2), as has been suggested in previous studies. Quasar X-ray spectra vary similarly to some local Seyfert AGNs in that they steepen as they brighten, with evidence for a constant, hard spectral component that is more prominent in fainter stages. We identify one highly variable Narrow Line Seyfert 1-type spectroscopic quasar in the Chandra Deep Field-North. We constrain the rate of kilosecond-timescale flares in the quasar population using {approx}8 months of total exposure and also constrain the distribution of variation amplitudes between exposures; extreme changes (>100%) are quite rare, while variation at the 25% level occurs in <25% of observations. [O III] {lambda}5007 {AA} emission may be stronger in sources with lower levels of X-ray variability; if confirmed, this would represent an additional link between small-scale (corona) and large-scale (narrow-line region) AGN properties.
- ID:
- ivo://cxc.harvard.edu/cda
- Title:
- Chandra X-ray Observatory Data Archive
- Short Name:
- CDA
- Date:
- 18 Jul 2019
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range.
- ID:
- ivo://cxc.harvard.edu/cda.siap
- Title:
- Chandra X-ray Observatory Data Archive
- Short Name:
- CDA
- Date:
- 21 Dec 2015
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range.
- ID:
- ivo://CDS.VizieR/J/A+AS/114/109
- Title:
- Cha X-ray sources & optical identifications
- Short Name:
- J/A+AS/114/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the observations of the ROSAT all-sky survey (RASS) in the direction of the Chamaeleon cloud complex, as well as the spectroscopic identifications of the detected X-ray sources. The main purpose of this identification program was the search for low mass pre-main sequence stars. Sixteen previously known PMS stars were detected with high confidence by ROSAT. Eight are classical T Tauri stars and eight are weak-line T Tauri stars. Seventy-seven new weak-line T Tauri stars were identified on the basis of the presence of strong Li {lambda}6707 absorption, spectral type later than F0 and chromospheric emission. We give coordinates and count rates of the X-ray sources, and present optical spectra and finding charts for the sources identified optically as new pre-main sequence stars. Optical UBV(RI)c and near-infrared JHKLM photometry for this sample of stars is also provided. In addition, 6 new dKe-dMe candidates are found among the RASS sources.