- ID:
- ivo://CDS.VizieR/J/MNRAS/491/655
- Title:
- Photometry and spectroscopy of RN LMC 1968
- Short Name:
- J/MNRAS/491/655
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive review of all observations of the eclipsing recurrent Nova LMC 1968 in the Large Magellanic Cloud which was previously observed in eruption in 1968, 1990, 2002, 2010, and most recently in 2016. We derive a probable recurrence time of 6.2+/-1.2yr and provide the ephemerides of the eclipse. In the ultraviolet-optical-IR photometry the light curve shows high variability right from the first observation around 2 d after eruption. Therefore no colour changes can be substantiated. Outburst spectra from 2016 and 1990 are very similar and are dominated by H and He lines longward of 2000{AA}. Interstellar reddening is found to be E(B-V)=0.07+/-0.01. The super soft X-ray luminosity is lower than the Eddington luminosity and the X-ray spectra suggest the mass of the white dwarf (WD) is larger than 1.3M_{sun}_. Eclipses in the light curve suggest that the system is at high orbital inclination. On day 4 after the eruption a recombination wave was observed in FeII ultraviolet absorption lines. Narrow-line components are seen after day 6 and explained as being due to reionization of ejecta from a previous eruption. The UV spectrum varies with orbital phase, in particular a component of the HeII 1640{AA} emission line, which leads us to propose that early-on the inner WD Roche lobe might be filled with a bound opaque medium prior to the re-formation of an accretion disc. Both this medium and the ejecta can cause the delay in the appearance of the soft X-ray source.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/144/131
- Title:
- Photometry and spectroscopy of SN 2010jl
- Short Name:
- J/AJ/144/131
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present extensive optical observations of a Type IIn supernova (SN IIn) 2010jl for the first 1.5years after its discovery. The UBVRI light curves demonstrated an interesting two-stage evolution during the nebular phase, which almost flatten out after about 90days from the optical maximum. SN 2010jl has one of the highest intrinsic H{alpha} luminosities ever recorded for an SN IIn, especially at late phase, suggesting a strong interaction of SN ejecta with the dense circumstellar material (CSM) ejected by the progenitor. This is also indicated by the remarkably strong Balmer lines persisting in the optical spectra. One interesting spectral evolution about SN 2010jl is the appearance of asymmetry of the Balmer lines. These lines can be well decomposed into a narrow component and an intermediate-width component. The intermediate-width component showed a steady increase in both strength and blueshift with time until t~400days after maximum, but it became less blueshifted at t~500days, when the line profile appeared relatively symmetric again. Owing to the fact that a pure reddening effect will lead to a sudden decline of the light curves and a progressive blueshift of the spectral lines, we therefore propose that the asymmetric profiles of H lines seen in SN 2010jl are unlikely due to the extinction by newly formed dust inside the ejecta, contrary to the explanation by some early studies. Based on a simple CSM-interaction model, we speculate that the progenitor of SN 2010jl may suffer a gigantic mass loss (~30-50M_{sun}_) a few decades before explosion. Considering a slow-moving stellar wind (e.g.,~28km/s) inferred for the preexisting, dense CSM shell and the extremely high mass-loss rate (1-2M_{sun}_/yr), we suggest that the progenitor of SN 2010jl might have experienced a red supergiant stage and may explode finally as a post-red supergiant star with an initial mass above 30-40M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/PAZh/35/592
- Title:
- Photometry of FG Sge at the ejection state
- Short Name:
- J/PAZh/35/592
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New photometric observations of the variable star FG Sge, a rapidly evolving planetary nebula nucleus, were performed in 2003-2008. On 230 nights, we obtained 86 UBV and 155 BVRI (or Rc, Ic) magnitude estimates. The maximum amplitude of the V-band light variations was >8mag. Six deep minima and four high maxima were observed.
- ID:
- ivo://CDS.VizieR/J/AJ/155/257
- Title:
- Photometry & RV follow-up observations of K2-18
- Short Name:
- J/AJ/155/257
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ~2 R_{Earth}_ and an orbital period of ~33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K_b_~3.5 m/s and a mass of M_b_~9 M_{Earth}_, yielding a bulk density around {rho}_b_~4 g/cm^3^. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time- and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.
- ID:
- ivo://CDS.VizieR/J/AJ/159/173
- Title:
- Photometry & RVs of 4 dwarfs hosting giant planets
- Short Name:
- J/AJ/159/173
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting giant planets around K-dwarfs. The planets HATS-47b, HATS-48Ab, HATS-49b, and HATS-72b have masses of 0.369_-0.021_^+0.031^M_J_, 0.243_-0.030_^+0.022^M_J_, 0.353_-0.027_^+0.038^M_J_, and 0.1254{+/-}0.0039M_J_, respectively, and radii of 1.117{+/-}0.014R_J_, 0.800{+/-}0.015R_J_, 0.765{+/-}0.013R_J_, and 0.7224{+/-}0.0032R_J_, respectively. The planets orbit close to their host stars with orbital periods of 3.9228days, 3.1317days, 4.1480days, and 7.3279days, respectively. The hosts are main-sequence K-dwarfs with masses of 0.674_-0.012_^+0.016^M_{odot}_, 0.7279{+/-}0.0066M_{odot}_, 0.7133{+/-}0.0075M_{odot}_, and 0.7311{+/-}0.0028, and with V-band magnitudes of V=14.829{+/-}0.010, 14.35{+/-}0.11, 14.998{+/-}0.040 and 12.469{+/-}0.010. The super-Neptune HATS-72b (a.k.a. WASP-191b and TOI294.01) was independently identified as a transiting planet candidate by the HATSouth, WASP, and TESS surveys, and we present a combined analysis of all of the data gathered by each of these projects (and their follow-up programs). An exceptionally precise mass is measured for HATS-72b thanks to high-precision radial velocity (RV) measurements obtained with VLT/ESPRESSO, FEROS, HARPS, and Magellan/PFS. We also incorporate TESS observations of the warm Saturn-hosting systems HATS-47 (a.k.a. TOI1073.01), HATS-48A, and HATS-49. HATS-47 was independently identified as a candidate by the TESS team, while the other two systems were not previously identified from the TESS data. The RV orbital variations are measured for these systems using Magellan/PFS. HATS-48A has a resolved 5.4" neighbor in Gaia DR2, which is a common-proper-motion binary star companion to HATS-48A with a mass of 0.22M_{odot}_ and a current projected physical separation of ~1400au.
- ID:
- ivo://CDS.VizieR/J/ApJ/795/38
- Title:
- Photometry/spectroscopic measurements for KA1858+4850
- Short Name:
- J/ApJ/795/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope from 2012 February to November, and obtained complementary V-band images from five other ground-based telescopes. We measured the H{beta} light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method and found rest-frame lags of {tau}_CCF_=13.53_-2.32_^+2.03^ days and {tau}_JAVELIN_=13.15_-1.00_^+1.08^ days. The H{beta} rms line profile has a width of {sigma}_line_=770+/-49 km/s. Combining these two results and assuming a virial scale factor of f=5.13, we obtained a virial estimate of M_BH_=8.06_-1.72_^+1.59^x10^6^M_{sun}_ for the mass of the central black hole and an Eddington ratio of L/L_Edd_{approx}0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei.
- ID:
- ivo://CDS.VizieR/J/AJ/161/221
- Title:
- Photometry & spectroscopy of 4 binaries stars
- Short Name:
- J/AJ/161/221
- Date:
- 16 Mar 2022 11:53:19
- Publisher:
- CDS
- Description:
- We present the photometric and spectroscopic analysis of four W-UMa binaries J015829.5+260333 (hereinafter as J0158), J030505.1+293443 (hereinafter as J0305), J102211.7+310022 (hereinafter as J1022), and KW-Psc. The VRcIc band photometric observations are carried out with the 1.3m Devasthal Fast Optical Telescope (DFOT). For low-resolution spectroscopy, we used the 2m Himalayan Chandra Telescope (HCT) as well as the archival data from the 4m LAMOST survey. The systems J0158 and J0305 show a period increase rate of 5.26({+/-}1.72)x10^-7^days/yr and 1.78({+/-}1.52)x10^-6^days/yr, respectively. The period of J1022 is found to be decreasing with a rate of 4.22({+/-}1.67)x10^-6^days/yr. The period analysis of KW-Psc displays no change in its period. The PHOEBE package is used for the light-curve modeling and basic parameters are evaluated with the help of the GAIA parallax. The asymmetry of light curves is explained with the assumption of cool spots at specific positions on one of the components of the system. On the basis of temperatures, mass ratios, fill-out factors, and periods, the system J1022 is identified as a W-subtype system while the others show some mixed properties. To probe the chromospheric activities in these W-UMa binaries, their spectra are compared with the known inactive stars' spectra. The comparison shows emission in H{alpha}, H{beta}, and CaII. To understand the evolutionary status of these systems, the components are plotted in mass-radius and mass-luminosity planes with other well characterized binary systems. The secondary components of all the systems are away from ZAMS, which indicates that the secondary is more evolved than the primary component.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A23
- Title:
- Photometry & spectroscopy of EE Cep: 2014-15
- Short Name:
- J/A+A/639/A23
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- EE Cep is one of few eclipsing binary systems with a dark, dusty disk around an invisible object similar to epsilon Aur. The system is characterized by grey and asymmetric eclipses every 5.6yr, with a significant variation in their photometric depth, ranging from ~0.5mag to ~2.0mag. The main aim of the observational campaign of the EE Cep eclipse in 2014 was to test the model of disk precession (Galan et al. 2012). We expected that this eclipse would be one of the deepest with a depth of ~2m.mag. We collected multicolor observations from almost 30 instruments located in Europe and North America. This photometric data covers 243 nights during and around the eclipse. We also analyse the low- and high- resolution spectra from several instruments. The eclipse was shallow with a depth of 0m.71 in V-band. The multicolor photometry illustrates small color changes during the eclipse with a total amplitude of order ~+0.15mag in B-I color index. The linear ephemeris for this system is updated by including new times of minima, measured from the three most recent eclipses at epochs E=9, 10 and 11. New spectroscopic observations were acquired, covering orbital phases around the eclipse, which were not observed in the past and increased the data sample, filling some gaps and giving a better insight into the evolution of the H{alpha} and NaI spectral line profiles during the primary eclipse. The eclipse of EE Cep in 2014 was shallower than expected 0.71mag instead of ~2.0mag. This means that our model of disk precession needs revision.
- ID:
- ivo://CDS.VizieR/J/MNRAS/338/508
- Title:
- Photometry+spectroscopy of UCM galaxies
- Short Name:
- J/MNRAS/338/508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the integrated properties of the stellar populations in the Universidad Complutense de Madrid (UCM) Survey of H{alpha}-selected galaxies. In this paper, the first of a series, we describe in detail the techniques developed to model star-forming galaxies using a mixture of stellar populations, and taking into account the observational uncertainties. We assume a recent burst of star formation superimposed on a more evolved population. The effects of the nebular continuum, line emission and dust attenuation are taken into account. We also test different model assumptions, including the choice of specific evolutionary synthesis model, initial mass function, star formation scenario and the treatment of dust extinction. Quantitative tests are applied to determine how well these models fit our multiwavelength observations for the UCM sample. Our observations span the optical and near-infrared, including both photometric and spectroscopic data. Our results indicate that extinction plays a key role in this kind of study, revealing that low- and high-obscured objects may require very different extinction laws and must be treated differently. We also demonstrate that the UCM Survey galaxies are best described by a short burst of star formation occurring within a quiescent galaxy, rather than by continuous star formation. A detailed discussion on the inferred parameters, such as the age, burst strength, metallicity, star formation rate, extinction and total stellar mass for individual objects, is presented in Paper II of this series.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A6
- Title:
- Photospheric parameters of CARMENES stars
- Short Name:
- J/A+A/615/A6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2^ method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since Teff, logg, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma}_Teff_=51K, {sigma}_logg_=0.07, and {sigma}_[Fe/H]_=0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.