- ID:
- ivo://CDS.VizieR/J/A+A/604/A128
- Title:
- S abundances for 1301 stars from GES
- Short Name:
- J/A+A/604/A128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. We wish to exploit the Gaia ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. We confirm the results from the literature that sulphur behaves as an alpha-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/872/58
- Title:
- Sagittarius stream stars with APOGEE obs.
- Short Name:
- J/ApJ/872/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for ~176000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observations of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a k-means clustering algorithm to six-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have Gaia kinematics and positions consistent with those predicted by N-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages (<2Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median rapo ~25kpc. These stars are likely the "accreted" halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H]~-0.2 before its most recent pericenter passage. If the "accreted halo" population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H]~-0.6, and had a similar star formation history to Sgr before merging.
- ID:
- ivo://CDS.VizieR/J/A+A/601/A32
- Title:
- 10 SALT spectra of HE 0435-4312
- Short Name:
- J/A+A/601/A32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The MgII emission line is visible in the optical band for intermediate redshift quasars (0.4<z<1.6) and it is thus an extremely important tool to measure the black hole mass and to understand the structure of the Broad Line Region. We aim to determine the substructure and the variability of the MgII line with the aim to identify which part of the line comes from a medium in Keplerian motion. Using the Southern African Large Telescope (SALT) with the Robert Stobie Spectrograph (RSS) we performed ten spectroscopic observations of quasar HE 0435-4312 (z=1.2231) over a period of three years (Dec 23/24, 2012 to Dec 7/8, 2015). Both the MgII line and the FeII pseudo-continuum increase with time. We clearly detect the systematic shift of the MgII line with respect to the FeII over the years, corresponding to the acceleration of 104+/-14km/s/year in the quasar rest frame. The MgII line shape is clearly non-Gaussian but single-component, and the increase in line equivalent width and line shift is not accompanied with significant evolution of the line shape. We analyse the conditions in the MgII and FeII formation region and we note that the very large difference in the covering factor and the turbulent velocity also support the conclusion that the two regions are spatially separated. The measured acceleration of the line systematic shift is too large to connect it with the orbital motion at a distance of the Broad Line Region (BLR) in this source. It may imply a precessing inner disk illuminating the BLR. Further monitoring is still needed to better constrain the variability mechanism.
- ID:
- ivo://CDS.VizieR/J/ApJ/875/60
- Title:
- SAMI Galaxy Survey: early-type gal. in A119 & A168
- Short Name:
- J/ApJ/875/60
- Date:
- 08 Mar 2022 13:03:14
- Publisher:
- CDS
- Description:
- We investigate the kinematic alignments of luminous early-type galaxies (M_r_<=-19.5mag) in A119 and A168 using the kinematic position angles (PA_kin_) from the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) survey data, motivated by the implication of the galaxy spin alignment in a cosmological context. To increase the size of our sample for statistical significance, we also use the photometric position angles (PA_phot_) for galaxies that have not been observed by SAMI, if their ellipticities are higher than 0.15. Our luminous early-type galaxies tend to prefer the specific position angles in both clusters, confirming the results of Kim+ (2018ApJ...860L...3K), who recently found the kinematic alignment of early-type galaxies in the Virgo cluster based on the ATLAS3D integral-field spectroscopic data. This alignment signal is more prominent for galaxies in the projected phase-space regions dominated by infalling populations. Furthermore, the alignment angles are closely related to the directions of the filamentary structures around clusters. The results lead us to conclude that many cluster early-type galaxies are likely to be accreted along filaments while maintaining their spin axes, which are predetermined before cluster infall.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/104
- Title:
- SAMI Galaxy Survey: rotators classification
- Short Name:
- J/ApJ/835/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h_3_ (~skewness) and h_4_ (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using two-dimensional integral field data from the SAMI Galaxy Survey. Proxies for the spin parameter ({lambda}R_e_) and ellipticity ({epsilon}_e_) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h_3_ versus V/{sigma} anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h_3_ and V/{sigma}. Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h_3_ versus V/{sigma} signatures. Within the SAMI Galaxy Survey, we identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2-5 correspond to fast rotators. We find that galaxies with similar {lambda}R_e_-{epsilon}_e_ values can show distinctly different h_3_-V/{sigma} signatures. Class 5 objects are previously unidentified fast rotators that show a weak h_3_ versus V/{sigma} anti-correlation. From simulations, these objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h_3_ versus V/{sigma} as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators.
- ID:
- ivo://CDS.VizieR/J/ApJ/804/7
- Title:
- SaMOSA: optical spectroscopy of 7 Fermi blazars
- Short Name:
- J/ApJ/804/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present multi-epoch optical spectroscopy of seven southern Fermi-monitored blazars from 2008 to 2013 using the Small and Medium Aperture Research Telescope System (SMARTS), with supplemental spectroscopy and polarization data from the Steward Observatory. We find that the emission lines are much less variable than the continuum; four of seven blazars had no detectable emission line variability over the 5 yr observation period. This is consistent with photoionization primarily by an accretion disk, allowing us to use the lines as a probe of disk activity. Comparing optical emission line flux with Fermi {gamma}-ray flux and optical polarized flux, we investigate whether relativistic jet variability is related to the accretion flow. In general, we see no such dependence, suggesting that the jet variability is likely caused by internal processes like turbulence or shock acceleration rather than a variable accretion rate. However, three sources showed statistically significant emission line flares in close temporal proximity to very large Fermi {gamma}-ray flares. While we do not have sufficient emission line data to quantitatively assess their correlation with the {gamma}-ray flux, it appears that in some cases the jet might provide additional photoionizing flux to the broad-line region (BLR), which implies that some {gamma}-rays are produced within the BLR, at least for these large flares.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/93
- Title:
- SAMP. III. Opt. LCs and spectra of two AGNs
- Short Name:
- J/ApJ/886/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Active galactic nuclei (AGNs) show a correlation between the size of the broad line region and the monochromatic continuum luminosity at 5100{AA}, allowing black hole mass estimation based on single-epoch spectra. However, the validity of the correlation is yet to be clearly tested for high-luminosity AGNs. We present the first reverberation mapping results of the Seoul National University AGN Monitoring Project (SAMP), which is designed to focus on luminous AGNs for probing the high end of the size-luminosity relation. We report time lag measurements of two AGNs, namely, 2MASSJ10261389+5237510 and SDSSJ161911.24+501109.2, using the light curves obtained over an ~1000d period with an average cadence of 10 and 20d, respectively, for photometry and spectroscopy monitoring. Based on a cross-correlation analysis and H{beta} line width measurements, we determine the H{beta} lag as 41.8_-6.0_^+4.9^ and 52.6_-14.7_^+17.6^ days in the observed frame, and black hole mass as 3.65_-0.57_^+0.49^x10^7^M_{sun}_ and 23.02_-6.56_^+7.81^x10^7^M_{sun}_, respectively, for 2MASS J1026 and SDSS J1619.
- ID:
- ivo://CDS.VizieR/J/MNRAS/452/2553
- Title:
- Sample of foreground-background quasar pairs
- Short Name:
- J/MNRAS/452/2553
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Previous observations of quasar host haloes at z~2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z~1 with constraints on chemically enriched, cool gas traced by MgII absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from L_bol_=10^44.4^ to 10^46.8^erg/s and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z~2. Moreover, 30-40 percent of the MgII absorption occurs at radial velocities of |Delta_v_|>300km/s from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.
- ID:
- ivo://CDS.VizieR/J/A+A/643/A80
- Title:
- sample of HeII-emitters abundances
- Short Name:
- J/A+A/643/A80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Star-forming galaxies with nebular HeII emission contain very energetic ionizing sources of radiation, which can be considered as analogs to the major contributors of the reionization of the Universe in early epochs. It is therefore of great importance to provide a reliable absolute scale for the equivalent effective temperature (T*) for these sources. We study a sample of local (z<0.2) star-forming galaxies showing optical nebular HeII emission using the so-called softness diagrams, involving emission lines of two elements in two consecutive stages of ionization (e.g., [SII]/[SIII] vs. [OII]/[OIII]). We use for the first time the HeI/HeII ratio in these diagrams in order to explore the higher range of T* expected in these objects, and to investigate the role of possible mechanisms driving the distribution of galaxy points in these diagrams. We build grids of photoionization models covering different black-body temperatures, model cluster atmospheres, and density-bounded geometries to explain the conditions observed in the sample. We verified that the use of the softness diagrams including the emission-line ratio HeI/HeII combined with black-body photoionization models can provide an absolute scale of T* for these objects. The application of a Bayesian-like code indicates T* in the range 50-80kK for the sample of galaxies, with a mean value higher than 60kK. The average of these high temperature values can only be reproduced using cluster model populations with nearly metal-free stars, although such ionizing sources cannot explain either the highest T* values, beyond 1{sigma}, or the dispersion observed in the softness diagrams. According to our photoionization models, most sample galaxies could be affected to some extent by ionizing photon leaking, presenting a mean photon absorption fraction of 26% or higher depending on the metallicity assumed for the ionizing cluster. The entire range of HeI/HeII, [SII]/[SIII], and [OII]/[OIII] ratios for these HeII-emitting galaxies is reproduced with our models, combining nearly metal-free ionizing clusters and photon leaking under different density-bounded conditions.
- ID:
- ivo://CDS.VizieR/J/AJ/139/1857
- Title:
- Sample of major galaxy pairs at z=0.08-0.38
- Short Name:
- J/AJ/139/1857
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We measure the strength, frequency, and timescale of tidally triggered star formation at redshift z=0.08-0.38 in a spectroscopically complete sample of galaxy pairs drawn from the magnitude-limited redshift survey of 9825 Smithsonian Hectospec Lensing Survey galaxies with R<20.3. To examine the evidence for tidal triggering, we identify a volume-limited sample of major (|{Delta}M_R_|<1.75, corresponding to mass ratio >1/5) pair galaxies with M_R_<-20.8 in the redshift range z=0.08-0.31.