We present new spectroscopic and polarimetric observations of the gravitational lens SDSS J1004+4112 taken with the 6m telescope of the Special Astrophysical Observatory (SAO, Russia). In order to explain the variability that is observed only in the blue wing of the CIV emission line, corresponding to image A, we analyze the spectroscopy and polarimetry of the four images of the lensed system. Spectra of the four images were taken in 2007, 2008, and 2018, and polarization was measured in the period 2014-2017. Additionally, we modeled the microlensing effect in the polarized light, assuming that the source of polarization is the equatorial scattering in the inner part of the torus. We find that a blue enhancement in the CIV line wings affects component A in all three epochs. We also find that the UV continuum of component D was amplified in the period 2007-2008, and that the red wings of CIII] and CIV appear brighter in D than in the other three components. We report significant changes in the polarization parameters of image D, which can be explained by microlensing. Our simulations of microlensing of an equatorial scattering region in the dusty torus can qualitatively explain the observed changes in the polarization degree and angle of image D.We do not detect significant variability in the polarization parameters of the other images (A, B, and C), although the averaged values of the polarization degree and angle are different for the different images. Microlensing of a broad line region model including a compact outflowing component can qualitatively explain the CIV blue wing enhancement (and variation) in component A. However, to confirmed this hypothesis, we need additional spectroscopic observation in future.
We spectroscopically re-observed the gravitational lens system SDSS J1339+1310 using OSIRIS on the GTC. We also monitored the r-band variability of the two quasar images (A and B) with the LT over 143 epochs in the period 2009-2016. These new data in both the wavelength and time domains have confirmed that the system is an unusual microlensing factory. The CIV emission line is remarkably microlensed, since the microlensing magnification of B relative to that for A,{mu}_BA_, reaches a value of 1.4 (~0.4mag) for its core. Moreover, the B image shows a red wing enhancement of CIV flux (relative to A), and {mu}_BA_=2 (0.75mag) for the CIV broad-line emission. Regarding the nuclear continuum, we find a chromatic behaviour of {mu}_BA_, which roughly varies from ~5 (1.75mag) at 7000{AA} to ~6 (1.95mag) at 4000{AA}. We also detect significant microlensing variability in the r band, and this includes a number of microlensing events on timescales of 50-100d. Fortunately, the presence of an intrinsic 0.7 mag dip in the light curves of A and B, permitted us to measure the time delay between both quasar images. This delay is {Delta}t_AB_=47^+5^_-6_d (1{sigma} confidence interval; A is leading), in good agreement with predictions of lens models.
This study of SDSS J080434.20+510349.2 (SDSS0804) is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A qualitative geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7+/-0.1 from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07mag amplitude and a 42.48min periodicity, which is half of the orbital period of the system. In September 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-hump-shape, but with a significantly smaller (~0.01mag) amplitude. Other types of variability like a "mini-outburst" or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive >=0.7M_{sun}_ white dwarf with a surface temperature of ~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool ~2500K. The inner parts of the disk should be optically thin in the continuum or totally void.
We present the first high-resolution spectroscopic observations of one red giant star in the ultra-faint dwarf galaxy Segue 2, which has the lowest total mass (including dark matter) estimated for any known galaxy. These observations were made using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Magellan II Telescope at Las Campanas Observatory. We perform a standard abundance analysis of this star, SDSS J021933.13+200830.2, and present abundances of 21 species of 18 elements as well as upper limits for 25 additional species. We derive [Fe/H]=-2.9, in excellent agreement with previous estimates from medium-resolution spectroscopy. Our main result is that this star bears the chemical signatures commonly found in field stars of similar metallicity. The heavy elements produced by neutron-capture reactions are present, but they are deficient at levels characteristic of stars in other ultra-faint dwarf galaxies and a few luminous dwarf galaxies. The otherwise normal abundance patterns suggest that the gas from which this star formed was enriched by metals from multiple Type II supernovae reflecting a relatively well-sampled IMF. This adds to the growing body of evidence indicating that Segue 2 may have been substantially more massive in the past.
We present the detection and detailed analysis of a diffuse molecular cloud at z_abs_=2.4636 towards the quasar SDSS J151349.52+035211.28 (hereafter J1513+0352) (zem~=2.68) observed with the X-shooter spectrograph at the Very Large Telescope. We measure very high column densities of atomic and molecular hydrogen, with logN(HI,H_2_)~=21.8,21.3. This is the highest H_2_ column density ever measured in an intervening damped Lyman-{alpha}system but we do not detect CO, implying log N(CO)/N(H_2_)<-7.8, which could be due to a low metallicity of the cloud. From the metal absorption lines, we derive the metallicity to be Z~=0.15Z_{sun}_ and determine the amount of dust by measuring the induced extinction of the background quasar light, AV~=0.4. We simultaneously detect Ly{alpha} emission at the same redshift, with a centroid located at a most probable impact parameter of only {rho}~=1.4kpc. We argue that the line of sight is therefore likely passing through the interstellar medium of a galaxy, as opposed to the circumgalactic medium. The relation between the surface density of gas and that of star formation seems to follow the global empirical relation derived in the nearby Universe although our constraints on the star formation rate and on the galaxy extent remain too loose to be conclusive. We study the transition from atomic to molecular hydrogen using a theoretical description based on the microphysics of molecular hydrogen.We use the derived chemical properties of the cloud and physical conditions (Tk~=90K and n~=250cm^-3^) derived through the excitation of H_2_ rotational levels and neutral carbon fine structure transitions to constrain the fundamental parameters that govern this transition. By comparing the theoretical and observed HI column densities, we are able to bring an independent constraint on the incident UV flux, which we find to be in agreement with that estimated from the observed star formation rate.
We report a method of identifying candidate low-metallicity blue compact dwarf galaxies (BCDs) from the Sloan Digital Sky Survey (SDSS) imaging data, and present 3m Lick Observatory and 10m W.M. Keck Observatory optical spectroscopic observations of 94 new systems that have been discovered with this method. The candidate BCDs are selected from Data Release 12 (DR12) of SDSS on the basis of their photometric colors and morphologies. Using the Kast spectrometer on the 3m telescope, we confirm that the candidate low-metallicity BCDs are emission-line galaxies, and we make metallicity estimates using the empirical R and S calibration methods. Follow-up observations on a subset of the lowest-metallicity systems are made at Keck using the Low Resolution Imaging Spectrometer, which allow for a direct measurement of the oxygen abundance. We determine that 45 of the reported BCDs are low-metallicity candidates with 12+log(O/H)<=7.65, including six systems which are either confirmed or projected to be among the lowest-metallicity galaxies known, at 1/30 of the solar oxygen abundance, or 12+log(O/H)~7.20.
We perform a semi-automated survey for {tau}_912_>=2 Lyman limit systems (LLSs) in quasar spectra from the Sloan Digital Sky Survey, Data Release 7. From a starting sample of 2473 quasars with z_em_=3.6-5.0, we analyze 429 spectra meeting strict selection criteria for a total redshift path {Delta}z=93.8 and identify 190 intervening systems at z_LLS_>=3.3. We also perform a survey for proximate LLSs (PLLSs) and find that {l}_PLLS_(z) is systematically lower (~25%) than intervening systems.
Black hole mass scaling relations suggest that extremely massive black holes (EMBHs) with M_BH_>~10^9.4^M_{sun}_ are found in the most massive galaxies with M_star_>~10^11.6^M_{sun}_, which are commonly found in dense environments, like galaxy clusters. Therefore, one can expect that there is a close connection between active EMBHs and dense environments. Here, we study the environments of 9461 galaxies and 2943 quasars at 0.24<~z<~0.40, among which 52 are extremely massive quasars with log(M_BH_/M_{sun}_)>=~9.4, using Sloan Digital Sky Survey and MMT Hectospec data. We find that, on average, both massive quasars and massive galaxies reside in environments more than ~2 times as dense as those of their less massive counterparts with log(M_BH_/M_{sun}_)<~9.0. However, massive quasars reside in environments about ~2 times less dense than inactive galaxies with log(M_BH_/M_{sun}_)>=9.4, and only about one third of massive quasars are found in galaxy clusters, while about two thirds of massive galaxies reside in such clusters. This indicates that massive galaxies are a much better signpost for galaxy clusters than massive quasars. The prevalence of massive quasars in moderate to low density environments is puzzling, considering that several simulation results show that these quasars appear to prefer dense environments. Several possible reasons for this discrepancy are discussed, although further investigation is needed to obtain a definite explanation.
We present measurements of the spectral properties for a total of 526,265 quasars, out of which 63% have a continuum signal-to-noise ratio >3pixel^-1^, selected from the fourteenth data release of the Sloan Digital Sky Survey (SDSS-DR14) quasar catalog. We performed a careful and homogeneous analysis of the SDSS spectra of these sources to estimate the continuum and line properties of several emission lines such as H{alpha}, H{beta}, H{gamma}, MgII, CIII], CIV, and Ly{alpha}. From the derived emission line parameters, we estimated single-epoch virial black hole masses (M_BH_) for the sample using H{beta}, MgII, and CIV emission lines. The sample covers a wide range in bolometric luminosity (logLbol; erg/s) between 44.4 and 47.3 and logM_BH_ between 7.1 and 9.9M_{sin}_. Using the ratio of Lbol to the Eddington luminosity as a measure of the accretion rate, the logarithm of the accretion rate is found to be in the range between -2.06 and 0.43. We performed several correlation analyses between different emission line parameters and found them to match the correlation known earlier using smaller samples. We note that strong FeII sources with a large Balmer line width and highly accreting sources with large M BH are rare in our sample. We make an extended and complete catalog available online that contains various spectral properties of 526,265 quasars derived in this work along with other properties culled from the SDSS-DR14 quasar catalog.
We present new spectroscopic observations that are part of our continuing monitoring campaign of 88 quasars at z<0.7 whose broad H{beta} lines are offset from their systemic redshifts by a few thousand km/s. These quasars have been considered as candidates for hosting supermassive black hole binaries (SBHBs) by analogy with single-lined spectroscopic binary stars. We present the data and describe our improved analysis techniques, which include an extensive evaluation of uncertainties. We also present a variety of measurements from the spectra that are of general interest and will be useful in later stages of our analysis. Additionally, we take this opportunity to study the variability of the optical continuum and integrated flux of the broad H{beta} line. We compare the variability properties of the SBHB candidates to those of a sample of typical quasars with similar redshifts and luminosities observed multiple times during the Sloan Digital Sky Survey. We find that the variability properties of the two samples are similar (variability amplitudes of 10%-30% on timescales of approximately 1-7 years) and that their structure functions can be described by a common model with parameters characteristic of typical quasars. These results suggest that the broad-line regions of SBHB candidates have a similar extent as those of typical quasars. We discuss the implications of this result for the SBHB scenario and the ensuing constraints on the orbital parameters.