- ID:
- ivo://CDS.VizieR/J/ApJ/701/1398
- Title:
- SFR for starburst galaxies
- Short Name:
- J/ApJ/701/1398
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7um polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z<0.5 having Spitzer IRS observations.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/219/8
- Title:
- SFR for WISE + SDSS spectroscopic galaxies
- Short Name:
- J/ApJS/219/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We combine Sloan Digitital Sky Survey (SDSS) and WISE photometry for the full SDSS spectroscopic galaxy sample, creating spectral energy distributions (SEDs) that cover {lambda}=0.4-22{mu}m for an unprecedentedly large and comprehensive sample of 858365 present-epoch galaxies. Using MAGPHYS (da Cunha+ 2008MNRAS.388.1595D), we then simultaneously and consistently model both the attenuated stellar SED and the dust emission at 12 and 22{mu}m, producing robust new calibrations for monochromatic mid-IR star formation rate (SFR) proxies. These modeling results provide the first mid-IR-based view of the bimodality in star formation activity among galaxies, exhibiting the sequence of star-forming galaxies ("main sequence") with a slope of dlogSFR/dlogM_*_=0.80 and a scatter of 0.39dex. We find that these new SFRs along the SF main sequence are systematically lower by a factor of 1.4 than those derived from optical spectroscopy. We show that for most present-day galaxies, the 0.4-22{mu}m SED fits can exquisitely predict the fluxes measured by Herschel at much longer wavelengths. Our analysis also illustrates that the majority of stars in the present-day universe are formed in luminous galaxies (~L*) in and around the "green valley" of the color-luminosity plane. We make publicly available the matched photometry catalog and SED modeling results.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/9
- Title:
- SFR & gas-phase metallicity in MaNGA gal.
- Short Name:
- J/ApJ/882/9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The role of gas accretion in galaxy evolution is still a matter of debate. The presence of inflows of metal-poor gas that trigger star formation bursts of low metallicity has been proposed as an explanation for the local anticorrelation between star formation rate (SFR) and gas-phase metallicity (Z_g_) found in the literature. In the present study, we show how the anticorrelation is also present as part of a diversified range of behaviors for a sample of more than 700 nearby spiral galaxies from the SDSS-IV MaNGA survey. We have characterized the local relation between SFR and Z_g_ after subtracting the azimuthally averaged radial profiles of both quantities. Of the analyzed galaxies, 60% display an SFR-Z_g_ anticorrelation, with the remaining 40% showing no correlation (19%) or positive correlation (21%). Applying a random forest machine-learning algorithm, we find that the slope of the correlation is mainly determined by the average gas-phase metallicity of the galaxy. Galaxy mass, g-r colors, stellar age, and mass density seem to play a less significant role. This result is supported by the performed second-order polynomial regression analysis. Thus, the local SFR-Z_g_ slope varies with the average metallicity, with the more metal-poor galaxies presenting the lowest slopes (i.e., the strongest SFR-Z_g_ anticorrelations), and reversing the relation for more metal-rich systems. Our results suggest that external gas accretion fuels star formation in metal-poor galaxies, whereas in metal-rich systems, the gas comes from previous star formation episodes.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A10
- Title:
- Sgr B2 los molecular absorption line spectra
- Short Name:
- J/A+A/610/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains >50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of- sight material is associated with diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the disk. We measure the column densities and estimate abundances, relative to H_2_, of 11 molecules and additional isotopologues observed in this material. We use absorption by optically thin transitions of c-C_3_H_2_ to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H_2_CS, and HCS+; oxygen-bearing molecules OH, SiO, and H_2_CO; and simple hydrocarbon molecules c-C_3_H_2_, l-C_3_H, and l-C_3_H^+^. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C_3_H_2_/c-H^13^CCCH provides a good estimate of the ^12^C/^13^C ratio, whereas H_2_CO/H_2_(^13^C)O exhibits fractionation. Third, we report the presence of l-C_3_H^+^ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V_.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A120
- Title:
- SgrB2(M) ^13^CCC and C^13^CC spectra
- Short Name:
- J/A+A/633/A120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Carbon molecules and their ^13^C-isotopologues can be used to determine the ^12^C/^13^C abundance ratios in stellar and interstellar objects. C3 is a pure carbon chain molecule found in star forming regions and in stellar shells of carbon-rich late-type stars. Latest laboratory data of ^13^C-isotopologues of C3 allow a selective search for the mono-substituted species ^13^CCC and C^13^CC based on accurate ro-vibrational frequencies. Our aim was to provide the first detection of the ^13^C-isotopologues ^13CCC and C^13^CC in space and to derive the ^12^C/ ^13^C ratio of interstellar gas in the massive star-forming region SgrB2(M) near the Galactic Center. We used the heterodyne receivers GREAT and upGREAT on board SOFIA to search for the ro-vibrational transitions Q(2) and Q(4) of ^13^CCC and C^13^CC at 1.9THz along the line of sight towards SgrB2(M). In addition, to determine the local excitation temperature we analyzed data from nine ro-vibrational transitions of the main isotopologue CCC in the frequency range between 1.6-1.9THz which were taken from the Herschel Science Data Archive. We report the first detection of the isotopologues ^13^CCC and C^13^CC. For both species the ro-vibrational absorption lines Q(2) and Q(4) have been identified, primarily arising from the warm gas physically associated with the strong continuum source SgrB2(M). From the available CCC ro-vibrational transitions we derived a gas excitation temperature of Tex=44.4^+4.7^_-3.9_K and a total column density of N(CCC)=3.88^+0.39^_-0.35_x10^15^cm^-2.. Assuming the excitation temperatures of C^13^CC and ^13^CCC to be the same as for CCC, we obtained column densities of the ^13^C-isotopologues of N(C^13^CC)=2.1^+0.9^_-0.6^_x10^14^cm^-2^ and N(^13^CCC)=2.4^+1.2^_-0.8_x10^14^cm^-2^. The derived ^12^C/^13^C abundance ratio in the C3 molecules is 20.5+/-4.2, which is in agreement with the elemental ratio of 20, typically observed in SgrB2(M). However, we find the N(^13^CCC)/N(C^13^CC) ratio to be 1.2+/-0.1, which is shifted from the statistically expected value of 2. We propose that the discrepant abundance ratio arises due to the the lower zero-point energy of C^13^CC which makes position- exchange reaction converting C^13^CC to C^13^CC energetically favorable.
- ID:
- ivo://CDS.VizieR/J/A+A/559/A47
- Title:
- Sgr B2(N) and Sgr B2(M) IRAM 30m line survey
- Short Name:
- J/A+A/559/A47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The discovery of amino acids in meteorites fallen to Earth and the detection of glycine, the simplest of them, in samples returned from a comet to Earth strongly suggest that the chemistry of the interstellar medium is capable of producing such complex organic molecules and that they may be widespread in our Galaxy. Our goal is to investigate the degree of chemical complexity that can be reached in the interstellar medium, in particular in dense star-forming regions. We performed an unbiased, spectral line survey toward Sgr B2(N) and (M), two regions where high-mass stars are formed, with the IRAM 30m telescope in the 3mm atmospheric transmission window. Partial surveys at 2 and 1.3mm were performed in parallel. The spectra were analyzed with a simple radiative transfer model that assumes local thermodynamic equilibrium but takes optical depth effects into account.
2327. Sgr B2 spectral survey
- ID:
- ivo://CDS.VizieR/J/ApJS/117/427
- Title:
- Sgr B2 spectral survey
- Short Name:
- J/ApJS/117/427
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have surveyed the frequency band 218.30-263.55GHz toward the core positions N and M and the quiescent cloud position NW in the Sgr B2 molecular cloud using the Swedish-ESO Submillimetre Telescope. In total 1730, 660, and 110 lines were detected in N, M, and NW, respectively, and 42 different molecular species were identified. The number of unidentified lines are 337, 51, and eight. Toward the N source, spectral line emission constitutes 22% of the total detected flux in the observed band, and complex organic molecules are the main contributors. Toward M, 14% of the broadband flux is caused by lines, and SO2 is here the dominant source of emission. NW is relatively poor in spectral lines and continuum. In this paper we present the spectra together with tables of suggested line identifications.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A135
- Title:
- Sgr dSph CEMP-r/s star abundance analysis
- Short Name:
- J/A+A/641/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) by means of UVES high-resolution spectra. The star, found in the outskirts of Sgr dSph, along the major axis of the main body, is a moderately metal-poor giant (Teff=4753K, logg=1.75, [Fe/H]=-1.55) with [C/Fe]=1.13, placing it in the so-called "high-carbon band", and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C- and s-process enrichment.
- ID:
- ivo://CDS.VizieR/J/A+A/605/A46
- Title:
- Sgr dSph nucleus stars chemical abundances
- Short Name:
- J/A+A/605/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Iron, Magnesium, Calcium, and Titanium abundances for 235 stars in the central region of the Sagittarius dwarf spheroidal galaxy (within 9.0'~=70pc from the center) from medium-resolution Keck/DEIMOS spectra. All the considered stars belong to the massive globular cluster M 54 or to the central nucleus of the galaxy (Sgr,N). In particular we provide abundances for 109 stars with [Fe/H]>=-1.0, more than doubling the available sample of spectroscopic metallicity and {alpha}-elements abundance estimates for Sgr dSph stars in this metallicity regime. We find for the first time a metallicity gradient in the Sgr,N population, whose peak iron abundance goes from [Fe/H]=-0.38 for R<=2.5' to [Fe/H]=-0.57 for 5.0<R<=9.0 arcmin. On the other hand the trends of [Mg/Fe], [Ca/Fe], and [Ti/Fe] with [Fe/H] are the same over the entire region explored by our study. We reproduce the observed chemical patterns of the Sagittarius dwarf spheroidal as a whole with a chemical evolution model implying a high mass progenitor (M_DM_=6x10^10^M_{sun}_) and a significant event of mass-stripping occurred a few Gyr ago, presumably starting at the first peri-Galactic passage after infall.
- ID:
- ivo://CDS.VizieR/J/MNRAS/427/2647
- Title:
- Sgr dSph stars spectral classification
- Short Name:
- J/MNRAS/427/2647
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectra of 1142 colour-selected stars in the direction of the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy, of which 1058 were taken with VLT/FLAMES multi-object spectrograph and 84 were taken with the SAAO Radcliffe 1.9-m telescope grating spectrograph. Spectroscopic membership is confirmed (at >99 per cent confidence) for 592 stars on the basis of their radial velocity, and spectral types are given. Very slow rotation is marginally detected around the galaxy's major axis. We identify five S stars and 23 carbon stars, of which all but four carbon stars are newly determined and all but one (PQ Sgr) are likely Sgr dSph members. We examine the onset of carbon richness in this metal-poor galaxy in the context of stellar models. We compare the stellar death rate (one star per 1000-1700yr) with the known planetary nebula dynamical ages and find that the bulk population produce the observed (carbon-rich) planetary nebulae. We compute average lifetimes of S and carbon stars as 60-250 and 130-500kyr, compared to a total thermal-pulsing asymptotic giant branch lifetime of 530-1330kyr. We conclude by discussing the return of carbon-rich material to the interstellar medium.