- ID:
- ivo://CDS.VizieR/J/AJ/152/73
- Title:
- Stellar nuclei and bulges of nearby S0 galaxies
- Short Name:
- J/AJ/152/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/589/A61
- Title:
- Stellar parameters and abundances for M30
- Short Name:
- J/A+A/589/A61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The prediction of the PLANCK-constrained primordial lithium abundance in the Universe is in discordance with the observed Li abundances in warm Population II dwarf and subgiant stars. Among the physically best motivated ideas, it has been suggested that this discrepancy can be alleviated if the stars observed today had undergone photospheric depletion of lithium. The cause of this depletion is investigated by accurately tracing the behaviour of the lithium abundances as a function of effective temperature. Globular clusters are ideal laboratories for such an abundance analysis as the relative stellar parameters of their stars can be precisely determined. We performed a homogeneous chemical abundance analysis of 144 stars in the metal-poor globular cluster M30, ranging from the cluster turnoff point to the tip of the red giant branch. Non-local thermal equilibrium (NLTE) abundances for Li, Ca, and Fe were derived where possible by fitting spectra obtained with VLT/FLAMES-GIRAFFE using the quantitative-spectroscopy package SME. Stellar parameters were derived by matching isochrones to the observed V vs V-I colour-magnitude diagram. Independent effective temperatures were obtained from automated profile fitting of the Balmer lines and by applying colour-Teff calibrations to the broadband photometry.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A72
- Title:
- Stellar parameters and abundances in NGC 6752
- Short Name:
- J/A+A/567/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752. These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC 6752. We perform an abundance analysis by combining photometric and spectroscopic data of 194 stars located between the turnoff point and the base of the red giant branch. Stellar parameters are derived from uvby Stromgren photometry. Using the quantitative-spectroscopy package SME, stellar surface abundances for light elements such as Li, Na, Mg, Al, and Si as well as heavier elements such as Ca, Ti, and Fe are derived in an automated way by fitting synthetic spectra to individual lines in the stellar spectra, obtained with the VLT/FLAMES-GIRAFFE spectrograph. Based on uvby Stromgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752.
- ID:
- ivo://CDS.VizieR/J/A+A/533/A141
- Title:
- Stellar parameters for 582 HARPS FGK stars
- Short Name:
- J/A+A/533/A141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To understand the formation and evolution of solar-type stars and planets in the solar neighborhood, we need to obtain their stellar parameters with high precision. We present a catalog of precise stellar parameters for low-activity FGK single stars in a volume-limited sample followed by the HARPS spectrograph in the quest to identify extra-solar planets. The spectroscopic analysis was completed assuming LTE with a grid of Kurucz atmosphere models and using the ARES code to perform an automatic measurement of the line equivalent widths. The results are compared with different independent methods and also with other values found in the literature for common stars. Both comparisons are consistent and illustrate the homogeneity of the parameters derived by our team. The derived metallicities of this sample reveal a somewhat different distribution for the present planet hosts, but still indicates the already known higher frequency of planets observed for the more metal-rich stars. We combine the results derived in this sample with the one from the CORALIE survey to present the largest homogeneous spectroscopic study of the metallicity-giant-planet relation using a total of 1830 stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/899/62
- Title:
- Stellar parameters from the 1st release of the MaSTar
- Short Name:
- J/ApJ/899/62
- Date:
- 14 Mar 2022 07:12:49
- Publisher:
- CDS
- Description:
- We report the stellar atmospheric parameters for 7503 spectra contained in the first release of the Mapping Nearby Galaxies at Apache Point Observatory survey (MaNGA) stellar library (MaStar) in Sloan Digital Sky Survey DR15. The first release of MaStar contains 8646 spectra measured from 3321 unique stars, each covering the wavelength range 3622-10354{AA} with a resolving power of R~1800. In this work, we first determined the basic stellar parameters: effective temperature (Teff), surface gravity (logg), and metallicity ([Fe/H]), which best fit the data using an empirical interpolator based on the Medium-resolution Isaac Newton Telescope library of empirical spectra (MILES), as implemented by the University of Lyon Spectroscopic analysis Software package. While we analyzed all 8646 spectra from the first release of MaStar, since MaStar has a wider parameter-space coverage than MILES, not all of these fits are robust. In addition, not all parameter regions covered by MILES yield robust results, likely due to the nonuniform coverage of the parameter space by MILES. We tested the robustness of the method using the MILES spectra itself and identified a proxy based on the local density of the training set. With this proxy, we identified 7503 MaStar spectra with robust fitting results. They cover the range from 3179 to 20517K in effective temperature (Teff), from 0.40 to 5.0 in surface gravity (logg), and from -2.49 to +0.73 in metallicity ([Fe/H]).
- ID:
- ivo://CDS.VizieR/J/A+A/530/A31
- Title:
- Stellar parameters in 10 globular cluster fields
- Short Name:
- J/A+A/530/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Here we publish the extracted stellar parameters from a recent large spectroscopic survey of ten globular clusters. A brief review of the project is also presented. Stellar parameters have been extracted from individual stellar spectra using both a modified version of the Radial Velocity Experiment (RAVE) pipeline and a pipeline based on the parameter estimation method of RAVE. We publish here all parameters extracted from both pipelines. We calibrate the metallicity and convert this to [Fe/H] for each star and, furthermore, we compare the velocities and velocity dispersions of the Galactic stars in each field to the Besanc,on Galaxy model. We find that the model does not correspond well with the data, indicating that the model is probably of little use for comparisons with pencil beam survey data such as this.
- ID:
- ivo://CDS.VizieR/J/AJ/159/287
- Title:
- Stellar parameters in Ophiuchus Stream with MMT
- Short Name:
- J/AJ/159/287
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new kinematic data for the Ophiuchus stellar stream. Spectra have been taken of member candidates at the Multiple Mirror Telescope (MMT) using Hectospec, Hectochelle, and Binospec, which provide more than 1800 new velocities. Combined with proper-motion measurements of stars in the field by the Gaia-DR2 catalog, we have derived stream membership probabilities, resulting in the detection of more than 200 likely members. These data show the stream extends to more than three times the length shown in the discovery data. A spur to the main stream is also detected. The high-resolution spectra allow us to resolve the stellar velocity dispersion, found to be 1.6{+/-}0.3km/s.
- ID:
- ivo://CDS.VizieR/J/A+A/577/A132
- Title:
- Stellar parameters of early M dwarfs
- Short Name:
- J/A+A/577/A132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Low-mass stars have been recognised as promising targets in the search for rocky, small planets with the potential of supporting life. As a consequence, Doppler search programmes using high-resolution spectrographs like HARPS or HARPS-N are providing huge quantities of optical spectra of M dwarfs. We aim to calibrate empirical relationships to determine accurate stellar parameters for early M dwarfs (spectral types M0-M4.5) using the same spectra that are used for the radial velocity determinations. Our methodology consists in the use of ratios of pseudo equivalent widths of spectral features. Stars with effective temperatures obtained from interferometric estimates of their radii are used as calibrators. Empirical calibrations for the spectral type are also provided. Combinations of features and ratios of features are used to derive calibrations for the stellar metallicity.
- ID:
- ivo://CDS.VizieR/J/A+A/517/A3
- Title:
- Stellar parameters of Kepler early-type targets
- Short Name:
- J/A+A/517/A3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar pulsation offers a unique opportunity to constrain the intrinsic parameters of stars and to unveil their inner structure. Kepler satellite is collecting a huge amount of data of unprecedent photometric precision, that will allow us to test theory and obtain a very precise tomography of stellar interiors. Aiming at providing the stars' fundamental parameters (Teff, logg, vsini, and luminosity) which are needed for computing asteroseismic models and interpreting Kepler data, we report spectroscopic observations of 23 early-type Kepler asteroseismic targets and 13 other stars in the Kepler field, but not selected to be observed. The cross-correlation with template spectra was used for measuring the radial velocity with the aim of identifying non-single stars. Spectral synthesis has been performed in order to derive the stellar parameters for our target stars. State-of-art LTE atmospheric models have been computed. For all the stars of our sample, we derive the radial velocity, Teff, logg, vsini, and luminosities. Further, for 12 stars, we perform a detailed abundance analysis of 20 species; for 16, we could derive only the [Fe/H] ratio. A spectral classification has been also performed for 17 stars in the sample. We found two double-lined spectroscopic binaries, HIP96299 and HIP98551, the former of which is an already known eclipsing binary, and two single-lined spectroscopic binaries, HIP97254 and HIP97724. We also report two suspected spectroscopic binaries, HIP92637 and HIP96762, and the detection of a possible variability of the radial velocity of HIP96277. Two of our program stars turn out to be chemically peculiar, namely HIP93941, which we classify as B2 He-weak, and HIP96210, which we classify as B6Mn. Finally, we find that HIP93522, HIP93941, HIP93943, HIP96210 and HIP96762, are very slow rotators (vsini<20km/s) which makes them very interesting and promising targets for an asteroseismic modeling.
- ID:
- ivo://CDS.VizieR/J/AJ/159/193
- Title:
- Stellar parameters of ~30000 LAMOST DR1 M dwarfs
- Short Name:
- J/AJ/159/193
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M-dwarfs are the most common type of star in the Galaxy, and because of their small size are favored targets for searches of Earth-sized transiting exoplanets. Current and upcoming all-sky spectroscopic surveys, such as the Large Sky Area Multi Fiber Spectroscopic Telescope (LAMOST), offer an opportunity to systematically determine physical properties of many more M dwarfs than has been previously possible. Here, we present new effective temperatures, radii, masses, and luminosities for 29678 M dwarfs with spectral types M0-M6 in the first data release (DR1) of LAMOST. We derived these parameters from the supervised machine-learning code, The Cannon, trained with 1388 M-dwarfs in the Transiting Exoplanet Survey Satellite Cool Dwarf Catalog that were also present in LAMOST with high signal-to-noise ratio (>250) spectra. Our validation tests show that the output parameter uncertainties are strongly correlated with the signal-to-noise of the LAMOST spectra, and we achieve typical uncertainties of 110K in T_eff_(~3%), 0.065R_{sun}_(~14%) in radius, 0.054M_{sun}_(~12%) in mass, and 0.012L_{sun}_(~20%) in luminosity. The model presented here can be rapidly applied to future LAMOST data releases, significantly extending the samples of well-characterized M dwarfs across the sky using new and exclusively data-based modeling methods.