Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/640/L5
- Title:
- Thermal emission spectrum of WASP-189b
- Short Name:
- J/A+A/640/L5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Temperature inversion layers are predicted to be present in ultra-hot giant planet atmospheres. Although such inversion layers have recently been observed in several ultra-hot Jupiters, the chemical species responsible for creating the inversion remain unidentified. Here, we present observations of the thermal emission spectrum of an ultra-hot Jupiter, WASP-189b, at high spectral resolution using the HARPS-N spectrograph. Using the cross-correlation technique, we detect a strong FeI signal. The detected FeI spectral lines are found in emission, which is direct evidence of a temperature inversion in the planetary atmosphere. We further performed a retrieval on the observed spectrum using a forward model with an MCMC approach. When assuming a solar metallicity, the best-fit result returns a temperature of 4320 K at the top of the inversion, which is significantly hotter than the planetary equilibrium temperature (2641 K). The temperature at the bottom of the inversion is determined as 2200 K. Such a strong temperature inversion is probably created by the absorption of atomic species like FeI.
- ID:
- ivo://CDS.VizieR/J/ApJ/747/77
- Title:
- Thermonuclear X-ray bursts. II. Eddington limit
- Short Name:
- J/ApJ/747/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Time-resolved X-ray spectroscopy of thermonuclear bursts observed from low-mass X-ray binaries offer a unique tool to measure neutron-star masses and radii. In this paper, we continue our systematic analysis of all the X-ray bursts observed with Rossi X-ray Timing Explorer from X-ray binaries. We determine the events that show clear evidence for photospheric radius expansion and measure the Eddington limits for these accreting neutron stars using the bolometric fluxes attained at the touchdown moments of each X-ray burst. We employ a Bayesian technique to investigate the degree to which the Eddington limit for each source remains constant between bursts. We find that for sources with a large number of radius expansion bursts, systematic uncertainties are at a 5%-10% level. Moreover, in six sources with only pairs of Eddington-limited bursts, the distribution of fluxes is consistent with a ~10% fractional dispersion. This indicates that the spectroscopic measurements of neutron-star masses and radii using thermonuclear X-ray bursts can reach the level of accuracy required to distinguish between different neutron-star equations of state, provided that uncertainties related to the overall flux calibration of X-ray detectors are of comparable magnitude.
- ID:
- ivo://CDS.VizieR/J/A+A/487/253
- Title:
- The RMS survey: ^13^CO observations of YSOs
- Short Name:
- J/A+A/487/253
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- MSX names, positions, observational rms values and molecular line parameters obtained from Gaussian fits to all detected components made towards the RMS sample of massive young stellar object candidates located in the southern Galactic plane.
- ID:
- ivo://CDS.VizieR/J/A+A/507/795
- Title:
- The RMS survey: water masers of YSOs
- Short Name:
- J/A+A/507/795
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The red MSX source (RMS) survey has identified a large sample of candidate massive young stellar objects (MYSOs) and ultra compact (UC) HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. To search for H_2_O masers towards a large sample of young high mass stars and to investigate the statistical correlation of H_2_O masers with the earliest stages of massive star formation. We have used the Mopra Radio telescope to make position-switched observations towards ~500 UCHII regions and MYSOs candidates identified from the RMS survey and located between 190{deg}<l<30{deg}. These observations have a 4{sigma} sensitivity of ~1Jy and a velocity resolution of ~0.4km/s.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A94
- Title:
- The role of the host star's metallicity
- Short Name:
- J/A+A/624/A94
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a more extensive grasp on the substellar formation process, we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values were derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tends to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low-mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2M_{Jup}_. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.
- ID:
- ivo://CDS.VizieR/J/A+A/659/A111
- Title:
- The rotational spectrum of acrylamide
- Short Name:
- J/A+A/659/A111
- Date:
- 15 Mar 2022 06:07:15
- Publisher:
- CDS
- Description:
- Numerous complex organic molecules have been detected in the universe and among them are amides, which are considered as prime models for species containing a peptide linkage. In its backbone, acrylamide (CH_2_CHC(O)NH_2_) bears not only the peptide bond, but also the vinyl functional group that is a common structural feature in many interstellar compounds. This makes acrylamide an interesting candidate for searches in the interstellar medium. In addition, a tentative detection of the related molecule propionamide (C_2_H_5_C(O)NH_2_) has been recently claimed toward Sgr B2(N). The aim of this work is to extend the knowledge of the laboratory rotational spectrum of acrylamide to higher frequencies, which would make it possible to conduct a rigorous search for interstellar signatures of this amide using millimeter wave astronomy. We measured and analyzed the rotational spectrum of acrylamide between 75 and 480GHz. We searched for emission of acrylamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array toward Sgr B2(N). We also searched for propionamide in the same source. The astronomical spectra were analyzed under the assumption of local thermodynamic equilibrium. We report accurate laboratory measurements and analyses of thousands of rotational transitions in the ground state and two excited vibrational states of the most stable syn form of acrylamide. In addition, we report an extensive set of rotational transitions for the less stable skew conformer. Tunneling through a low energy barrier between two symmetrically equivalent configurations has been revealed for this higher-energy species. Neither acrylamide nor propionamide were detected toward the two main hot molecular cores of Sgr B2(N). We did not detect propionamide either toward a position located to the east of the main hot core, thereby undermining the recent claim of its interstellar detection toward this position. We find that acrylamide and propionamide are at least 26 and 14 times less abundant, respectively, than acetamide toward the main hot core Sgr B2(N1S), and at least 6 and 3 times less abundant, respectively, than acetamide toward the secondary hot core Sgr B2(N2). A comparison with results of astrochemical kinetics model for related species suggests that acrylamide may be a few hundred times less abundant than acetamide, corresponding to a value that is at least an order of magnitude lower than the observational upper limits. Propionamide may be as little as only a factor of two less abundant than the upper limit derived toward Sgr B2(N1S). Lastly, the spectroscopic data presented in this work will aid future searches of acrylamide in space.
- ID:
- ivo://CDS.VizieR/J/A+A/657/A99
- Title:
- The rotational spectrum of glycinamide
- Short Name:
- J/A+A/657/A99
- Date:
- 21 Mar 2022 09:35:44
- Publisher:
- CDS
- Description:
- Glycinamide (NH_2_CH_2_C(O)NH_2_) is considered to be one of the possible precursors of the simplest amino acid glycine. Its only rotational spectrum reported so far has been in the cm-wave region on a laser-ablation generated supersonic expansion sample. The aim of this work is to extend the laboratory spectrum of glycinamide into the millimetre wave region to support its searches in the interstellar medium and to perform the first check for its presence in the high-mass star forming region Sagittarius B2(N). Glycinamide was synthesised chemically and was studied with broadband rotational spectroscopy in the 90-329 GHz region with the sample in slow flow at 50{deg}C. Tunneling across a low energy barrier between two symmetry equivalent configurations of the molecule resulted in splitting of each vibrational state and many perturbations in associated rotational energy levels, requiring careful coupled state fits for each vibrational doublet. We searched for emission of glycinamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimetre/submillimetre Array toward Sgr B2(N). The astronomical spectra were analysed under the assumption of local thermodynamic equilibrium. We report the first analysis of the mm-wave rotational spectrum of glycinamide, resulting in fitting to experimental measurement accuracy of over 1200 assigned and measured transition frequencies for the ground state tunneling doublet, of many lines for tunneling doublets for two singly excited vibrational states, and determination of precise vibrational separation in each doublet. We did not detect emission from glycinamide in the hot molecular core Sgr B2(N1S). We derived a column density upper limit of 1.5x10^16^cm^-2^, which implies that glycinamide is at least seven times less abundant than aminoacetonitrile and 1.8 times less abundant than urea in this source.
- ID:
- ivo://CDS.VizieR/J/ApJ/530/783
- Title:
- The r-process enriched giant HD 115444
- Short Name:
- J/ApJ/530/783
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New high-resolution, very high signal-to-noise spectra of ultrametal-poor (UMP) giant stars HD 115444 and HD 122563 have been gathered with the High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7 m telescope. With these spectra, line identification and model atmosphere analyses have been conducted, emphasizing the neutron-capture elements. Twenty elements with Z > 30 have been identified in the spectrum of HD 115444. This star is known to have overabundances of the neutron-capture elements, but it has lacked a detailed analysis necessary to compare with nucleosynthesis predictions. The new study features a line-by-line differential abundance comparison of HD 115444 with the bright, well-studied halo giant HD 122563.
- ID:
- ivo://CDS.VizieR/J/ApJS/183/17
- Title:
- The SDSS DR5/XMM-Newton quasar survey
- Short Name:
- J/ApJS/183/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 792 Fifth Data Release Sloan Digital Sky Survey quasars with optical spectra that have been observed serendipitously in the X-rays with the XMM-Newton. These quasars cover a redshift range of z=0.11-5.41 and a magnitude range of i=15.3-20.7. Substantial numbers of radio-loud (70) and broad absorption line (51) quasars exist within this sample. Significant X-ray detections at >=2{sigma} account for 87% of the sample (685 quasars), and 473 quasars are detected at >=6{sigma}, sufficient to allow X-ray spectral fits. For detected sources, ~60% have X-ray fluxes between F_2-10keV_=(1-10)x10^-14^erg/cm^2^/s. We fit a single power law, a fixed power law with intrinsic absorption left free to vary, and an absorbed power-law model to all quasars with X-ray signal-to-noise ratio >=6, resulting in a weighted mean photon index {Gamma}=1.91+/-0.08, with an intrinsic dispersion {sigma}_{Gamma}_=0.38.