- ID:
- ivo://CDS.VizieR/J/ApJ/766/3
- Title:
- Limb-darkening coefficients for eclipsing WD*
- Short Name:
- J/ApJ/766/3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present extensive calculations of linear and nonlinear limb-darkening coefficients as well as complete intensity profiles appropriate for modeling the light-curves of eclipsing white dwarfs. We compute limb-darkening coefficients in the Johnson-Kron-Cousins UBVRI photometric system as well as the Large Synoptic Survey Telescope (LSST) ugrizy system using the most up to date model atmospheres available. In all, we provide the coefficients for seven different limb-darkening laws. We describe the variations of these coefficients as a function of the atmospheric parameters, including the effects of convection at low effective temperatures. Finally, we discuss the importance of having readily available limb-darkening coefficients in the context of present and future photometric surveys like the LSST, Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). The LSST, for example, may find ~10^5^ eclipsing white dwarfs. The limb-darkening calculations presented here will be an essential part of the detailed analysis of all of these systems.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/567/A3
- Title:
- Limb-darkening coefficients for MOST
- Short Name:
- J/A+A/567/A3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new calculations of limb and gravity-darkening coefficients to be used as input in many fields of stellar physics such as synthetic light curves of double-lined eclipsing binaries and planetary transits, studies of stellar diameters or line profiles in rotating stars. We compute the limb-darkening coefficients specifically for the photometric system of the satellite MOST (Microvariability and Oscillations in STars). All computations were performed by adopting the least-square method, but for completeness we also performed calculations for the linear and bi-parametric approaches by adopting the flux conservation method. The passband gravity-darkening coefficients y({lambda}) were computed by adopting a more general differential equation, which also takes the effects of convection into account. We used two stellar atmosphere models: ATLAS (plane-parallel) and PHOENIX (spherical and quasi-spherical). We adopted six laws to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a more general one with four terms. The covered ranges of T_eff_, log g, metallicities, and microturbulent velocities are [1500-50000K, 0-5.5,-5.0-1.0, 0-8km/s], respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/554/A98
- Title:
- Limb-darkening coefficients for red giants
- Short Name:
- J/A+A/554/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRoT and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities logg<3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
- ID:
- ivo://CDS.VizieR/J/A+AS/114/247
- Title:
- Limb-darkening coefficients for R I J H K
- Short Name:
- J/A+AS/114/247
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have computed limb-darkening coefficients for five commonly used near infrared photometric bands, namely R, I, J, H, and K, using the stellar atmosphere models by Kurucz (1993). Since the behaviour of the specific intensities is very dependent on the range of effective temperatures considered, we have adopted three analytical approximations to the limb darkening: linear, quadratic and square root. The least-squares method has been adopted for the fit of the limb-darkening coefficients to the model atmospheres.
- ID:
- ivo://CDS.VizieR/J/A+A/335/647
- Title:
- Limb-darkening coefficients for ubvyUBVRIJHK
- Short Name:
- J/A+A/335/647
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Linear and non-linear limb-darkening coefficients for the photometric bands u v b y U B V R I J H K are computed for very low effective temperatures stars. The atmosphere models used (PHOENIX-NextGen) do not include the effects of dust formation and dust opacities. These calculations are presented for the first time . The calculations extend the range of effective temperatures (2000K-50000K) covered by our previous papers. These data are important in order to deal with stars in the lower part of Main-Sequence like M or brown dwarfs. The non-linear behavior of the limb-darkening laws, particularly in this effective temperature range, is emphasized and we urge users to take it into account.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A157
- Title:
- Limb-darkening coefficients for white dwarfs
- Short Name:
- J/A+A/641/A157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Systematic theoretical calculations of Doppler beaming factors are very scarce in the literature, mainly in the case of white dwarfs. Additionally, there are no specific calculations for the limb-darkening coefficients of 3D white dwarf models. The objective of this research is to provide the astronomical community with Doppler beaming calculations for a wide range of effective temperatures, local gravities and hydrogen/metal content for white dwarfs as well as stars on both the main sequence and the giant branch. In addition, for the first time we also present the theoretical calculations of the limb-darkening coefficients for 3D white dwarfs models. We computed Doppler beaming factors for DA, DB and DBA white dwarf models, as well as for main sequence and giant stars covering the transmission curves of the Sloan, UBVRI, HiPERCAM, Kepler, TESS, and Gaia photometric systems. The calculations of the limb-darkening coefficients for 3D models were carried out using the least-squares method for the same mentioned photometric systems. The input physics of the white dwarf models for which we have computed the Doppler beaming factors are: chemical compositions log[H/He]=-10.0 (DB), -2.0 (DBA) and He/H=0 (DA), with logg varying between 5.0 and 9.5 and effective temperatures in the range 3750-100000K. The beaming factors were also calculated assuming non-local thermodynamic equilibrium (NLTE) for the case of DA white dwarfs with T_eff_>40000K. For the mixing-length parameters we adopted ML2/{alpha}=0.8 (DA case) and 1.25 (DB and DBA). The Doppler beaming factors for main sequence and giant stars were computed using the ATLAS9 version, characterized by metallicities ranging from [-2.5, 0.2] solar abundances, with logg varying between 0 and 5.0 and effective temperatures between 3500-50000K. The adopted microturbulent velocity for these models was 2.0km/s. The limb-darkening coefficients were computed for 3D DA and DB white dwarf models calculated with the CO^5^BOLD radiation-hydrodynamics code. The parameter range covered by 3D DA models spans logg values between 7.0 and 9.0, Teff between 6000 and 15000K and He/H=0. The 3D DB models cover a similar parameter range of logg between 7.5 and 9.0, Teff between 12000 and 34000K and logH/He=-10.0. We adopted six laws for the computation of the limb-darkening coefficients: linear, quadratic, square root, logarithmic, power-2, and a general one with four coefficients. The beaming factor calculations which use realistic models of stellar atmospheres show that the black body approximation is not accurate, mainly for the filters u, u', U, g, g' and B. The black body approach is only valid for high effective temperatures and/or long effective wavelengths. Therefore, for more accurate analyses of light curves, we recommend the use of the beaming factors presented in this paper. Concerning limb-darkening, the distribution of specific intensities for 3D models indicates that in general these models are less bright towards the limb than their 1D counterparts, which implies steeper profiles. To describe these intensities better, we recommend the use of the four-terms law (also for 1D models) given the level of precision that is being achieved with Earth-based instruments, as well as space missions such as Kepler, TESS or PLATO in the future.
- ID:
- ivo://CDS.VizieR/J/A+A/405/1095
- Title:
- Limb-darkening coefficients from ATLAS9 models
- Short Name:
- J/A+A/405/1095
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using up-to-date model atmospheres (Heiter et al. 2002A&A...392..619H) with the turbulent convection approach developed by Canuto, Goldman & Mazzitelli (1996ApJ...473..550C, CGM), quadratic, cubic and square root limb darkening coefficients (LDC) are calculated with a least square fit method for the Stroemgren photometric system. This is done for a sample of solar metallicity models with effective temperatures between 6000 and 8500K and with logg between 2.5 and 4.5. A comparison is made between these LDC and the ones computed from model atmospheres using the classical mixing length prescription with a mixing length parameter {alpha}=1.25 and {alpha}=0.5. For CGM model atmospheres, the law which reproduces better the model intensity is found to be the square root one for the u band and the cubic law for the v band. The results are more complex for the b and y bands depending on the temperature and gravity of the model. Similar conclusions are reached for Mixing Length Theory (MLT) {alpha}=0.5 models. As expected much larger differences are found between CGM and MLT with {alpha}=1.25. In a second part, the weighted limb-darkening integrals, b_ell_, and their derivatives with respect to temperature and gravity, are then computed using the best limb-darkening law. These integrals are known to be very important in the context of photometric mode identification of non-radial pulsating stars. The effect of convection treatment on these quantities is discussed and as expected differences in the b_ell_ coefficients and derivatives computed with CGM and MLT {alpha}=0.5 are much smaller than differences obtained between computations with CGM and MLT {alpha}=1.25. The limb darkening coefficients are given here for the u, v, b and y bands and for CGM models, MLT {alpha}=0.5 models and MLT {alpha}=1.25 models.
- ID:
- ivo://CDS.VizieR/J/AJ/106/2096
- Title:
- Limb-darkening coefficients in binaries
- Short Name:
- J/AJ/106/2096
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve program. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravities. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 0.09 nm and 160 {mu}m) and tables of passband-specific coefficients for commonly used photometric filters.
- ID:
- ivo://CDS.VizieR/J/A+A/546/A14
- Title:
- Limb-darkening for CoRoT, Kepler, Spitzer
- Short Name:
- J/A+A/546/A14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The knowledge of how the specific intensity is distributed over the stellar disk is crucial for interpreting the light curves of extrasolar transiting planets, double-lined eclipsing binaries, and other astrophysical phenomena. To provide theoretical inputs for light curve modelling codes, we present new calculations of limb-darkening coefficients for the spherically symmetric PHOENIX models. The limb-darkening coefficients were computed by covering the transmission curves of Kepler, CoRoT, and Spitzer space missions, as well as the passbands of the Stromgren, Johnson-Cousins, Sloan, and 2MASS. These computations adopted the least-square method. In addition, we also calculated the linear and bi-parametric approximations by adopting the flux conservation method as an additional tool for estimating the theoretical error bars in the limb-darkening coefficients. Six laws were used to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a more general one with 4 terms. The computations are presented for the solar chemical composition, with logg varying between 2.5 and 5.5 and effective temperatures between 1500K-4800K. The adopted Microturbulent velocity and the mixing-length parameters are 2.0km/s and 2.0, respectively. Model are for solar metallicity.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A16
- Title:
- Limb-darkening for CoRoT, Kepler, Spitzer. II.
- Short Name:
- J/A+A/552/A16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an extension of our investigations on limb-darkening coefficients computed with spherical symmetrical PHOENIX models. The models investigated in this paper cover the range 5000K<=Teff<=10000K and complete our previous studies of low effective temperatures computed with the same code. The limb-darkening coefficients are computed for the transmission curves of the Kepler, CoRoT, and Spitzer space missions and the Stroemgren, Johnson-Cousins, Sloan, and 2MASS passbands. These computations were performed by adopting the least-squares method. We have used six laws to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a general law with four terms. The computations are presented for the solar chemical composition and cover the range 3.0<=logg<=5.5. The adopted microturbulent velocity and the mixing-length parameter are 2.0km/s and 2.0.