- ID:
- ivo://CDS.VizieR/J/ApJ/783/84
- Title:
- ALMA observations in 107 galaxies at z=0.2-2.5
- Short Name:
- J/ApJ/783/84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350GHz) dust emission in 107 galaxies from z=0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M_*_=~10^11^M_{sun}_:37 at z~0.4, 33 at z~0.9, and 31 at z=2. A fourth sample with six infrared-luminous galaxies at z=2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ~6 from 1 to 2x10^10^M_{sun}_ at both z=2 and 0.9 down to ~2x10^9^M_{sun}_at z=0.4. The infrared-luminous sample at z=2 shows a further ~4 times increase in M_ISM_compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ~2%+/-0.5%, 12%+/-3%, 14%+/-2%, and 53%+/-3% for the four subsamples (z=0.4, 0.9, and 2 and infrared-bright galaxies).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/827/142
- Title:
- ALMA observations of GKM stars in Upper Sco
- Short Name:
- J/ApJ/827/142
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88mm continuum and ^12^CO J=3-2 line fluxes of disks around low-mass (0.14-1.66M_{sun}_) stars at an age of 5-11Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (<~40au), or if the CO is heavily depleted by a factor of at least ~1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of M_dust_{propto}M_*_^1.67+/-0.37^. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of log(M_dust_/M*) between Taurus and Upper Sco is 0.64+/-0.09, such that M_dust_/M* is lower in Upper Sco by a factor of ~4.5.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/145
- Title:
- ALMaQUEST. IV. ALMA-MaNGA QUEnching & star formation
- Short Name:
- J/ApJ/903/145
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially resolved 12CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kiloparsec scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations and showcase some of the key results enabled by the combination of spatially matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction (f_H_2__), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or f_H_2__) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small Hi sample size. On kiloparsec scales, the variations in both SFE and f_H_2__ within individual galaxies can be as large as 1-2dex, thereby demonstrating that the availability of spatially resolved observations is essential to understand the details of both star formation and quenching processes.
- ID:
- ivo://CDS.VizieR/J/ApJ/828/46
- Title:
- ALMA survey of Lupus protoplanetary disks. I.
- Short Name:
- J/ApJ/828/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first high-resolution sub-millimeter survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use the Atacama Large Millimeter/Submillimeter Array (ALMA) to survey 89 protoplanetary disks around stars with M*>0.1M_{sun}_ in the young (1-3Myr), nearby (150-200pc) Lupus complex. Our observations cover the 890{mu}m continuum and the ^13^CO and C^18^O 3-2 lines. We use the sub-millimeter continuum to constrain M_dust_ to a few Martian masses (0.2-0.4M_{Earth}_) and the CO isotopologue lines to constrain M_gas_ to roughly a Jupiter mass (assuming an interstellar medium (ISM)-like [CO]/[H_2_] abundance). Of 89 sources, we detect 62 in continuum, 36 in ^13^CO, and 11 in C^18^O at >3{sigma} significance. Stacking individually undetected sources limits their average dust mass to <~6 Lunar masses (0.03M_{Earth}_), indicating rapid evolution once disk clearing begins. We find a positive correlation between M_dust_ and M*, and present the first evidence for a positive correlation between M_gas_ and M*, which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3x higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have M_gas_<~1M_Jup_ and gas-to-dust ratios <100, assuming an ISM-like [CO]/[H_2_] abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.
- ID:
- ivo://CDS.VizieR/J/ApJ/859/21
- Title:
- ALMA survey of Lupus protoplanetary disks. II.
- Short Name:
- J/ApJ/859/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (~1-3Myr) Lupus star-forming region, covering the 1.33mm continuum and the ^12^CO, ^13^CO, and C^18^O J=2-1 lines. The spatial resolution is ~0.25" with a medium 3{sigma} continuum sensitivity of 0.30mJy, corresponding to Mdust ~0.2M_{Earth}_. We apply Keplerian masking to enhance the signal-to-noise ratios of our ^12^CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, {alpha}_visc_, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33mm continuum fluxes with our previous 890{mu}m continuum observations, we also calculate the millimeter spectral index, {alpha}_mm_, for 70 Lupus disks; we find an anticorrelation between {alpha}_mm_ and millimeter flux for low-mass disks (M_dust_<~5), followed by a flattening as disks approach {alpha}_mm_~2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
- ID:
- ivo://CDS.VizieR/J/ApJS/251/20
- Title:
- ALMA survey of Orion PGCCs (ALMASOP). II. 1.3mm
- Short Name:
- J/ApJS/251/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planck Galactic Cold Clumps (PGCCs) are considered to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3mm (band 6) using three different configurations (resolutions ~0.35", 1.0", and 7.0") to statistically investigate their evolutionary stages and substructures. We have obtained images of the 1.3mm continuum and molecular line emission (^12^CO, and SiO) at an angular resolution of ~0.35" (~140au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust mass ~0.093M_{sun}_ and deconvolved size ~0.27". Dense substructures are clearly detected within the central 1000au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class 0 to Class I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 (>50%) show high-velocity jets in SiO. The CO velocity extents ({Delta}Vs) span from 4 to 110km/s with outflow cavity opening angle width at 400au ranging from [{Theta}_obs_]_400_~0.6"-3.9", which corresponds to 33.4{deg}-125.7{deg}. For the majority of the outflow sources, the {Delta}Vs show a positive correlation with [{Theta}_obs_]_400_, suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
- ID:
- ivo://CDS.VizieR/J/AJ/153/240
- Title:
- ALMA survey of protoplanetary disks in sigma Ori
- Short Name:
- J/AJ/153/240
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The {sigma} Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (~3-5Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around {sigma} Orionis members with M_*_>~0.1M_{Sun}_. Our observations cover the 1.33mm continuum and several CO J=2-1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in ^12^CO, 3 in ^13^CO, and none in C^18^O. Using the continuum emission to estimate dust mass, we find only 11 disks with M_dust_>~10M_{Earth}_, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5x lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in {sigma} Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the M_dust_-M_*_ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
- ID:
- ivo://CDS.VizieR/J/MNRAS/457/1028
- Title:
- alpha Per cluster possible members
- Short Name:
- J/MNRAS/457/1028
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained membership probabilities of stars within a field of from the centre of the open cluster alpha Persei using proper motions and photometry from the PPMXL and Wide-field Infrared Survey Explorer catalogues. We have identified 810 possible stellar members of alpha Persei. We derived the global and radial present-day mass function (MF) of the cluster and found that they are well matched by two-stage power-law relations with different slopes at different radii. The global MF of alpha Persei shows a turnover at m=0.62M_{sun}_ with low- and high-mass slopes of {alpha}_low_=0.50+/-0.09 (0.1<m/M_{sun}_<0.62) and {alpha}_high_=2.32+/-0.14 (0.62<=m/M_{sun}_<4.68), respectively. The high-mass slope of the cluster increases from 2.01 inside 110 to 2.63 outside 22, whereas the mean stellar mass decreases from 0.95 to 0.57M_{sun}_ in the same regions, signifying clear evidence of mass segregation in the cluster. From an examination of the high-quality colour-magnitude data of the cluster and performing a series of Monte Carlo simulations, we obtained a binary fraction of fbin=34+/-12 per cent for stars with 0.70<m/M_{sun}_<4.68. This is significantly larger than the observed binary fraction, indicating that this open cluster contains a large population of unresolved binaries. Finally, we corrected the MF slopes for the effect of unresolved binaries and found low- and high-mass slopes of {alpha}_low_=0.89+/-0.11 and {alpha}_high_=2.37+/-0.09 and a total cluster mass of 352M_{sun}_ for alpha Persei.
- ID:
- ivo://CDS.VizieR/J/AJ/159/167
- Title:
- AMUSING++ nearby galaxy compilation. I. Sample
- Short Name:
- J/AJ/159/167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present here the All-weather MUse Supernova Integral-field of Nearby Galaxies (AMUSING++): the largest compilation of nearby galaxies observed with the Multi Unit Spectroscopic Explorer (MUSE) integral-field spectrograph so far. This collection consists of 635 galaxies from different MUSE projects covering the redshift interval 0.0002<z<0.1. The sample and its main properties are characterized and described here. It includes galaxies of almost all morphological types, with a good coverage in its color-magnitude diagram, within the stellar mass range between 10^8^ and 10^12^M{sun}, and with properties resembling those of a diameter-selected sample. The AMUSING++ sample is, therefore, suitable for studying, with unprecedented detail, the properties of nearby galaxies at global and local scales, providing us with more than 50 million individual spectra. We use this compilation to investigate the presence of galactic outflows. We exploit the use of combined emission-line images to explore the shape of the different ionized components and the distribution along classical diagnostic diagrams to disentangle the different ionizing sources across the optical extension of each galaxy. We use the cross-correlation function to estimate the level of symmetry of the emission lines as an indication of the presence of shocks and/or active galactic nuclei. We uncovered a total of 54 outflows, comprising ~8% of the sample. A large number of the discovered outflows correspond to those driven by active galactic nuclei (~60%), suggesting some bias in the selection of our sample. No clear evidence was found that outflow host galaxies are highly star-forming, and outflows appear to be found within all galaxies around the star-formation sequence.
- ID:
- ivo://CDS.VizieR/J/AJ/143/39
- Title:
- Analysis of hot Jupiters in Kepler Q2
- Short Name:
- J/AJ/143/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present the results of searching the Kepler Q2 public data set for the secondary eclipses of 76 hot Jupiter planet candidates from the list of 1235 candidates published by Borucki et al., 2011, Cat. J/ApJ/736/19. This search has been performed by modeling both the Kepler pre-search data conditioned light curves and new light curves produced via our own photometric pipeline. We derive new stellar and planetary parameters for each system, while calculating robust errors for both. We find 16 systems with 1{sigma}-2{sigma}, 14 systems with 2{sigma}-3{sigma}, and 6 systems with >3{sigma} confidence level secondary eclipse detections in at least one light curve produced via the Kepler pre-search data conditioned light curve or our own pipeline; however, results can vary depending on the light curve modeled and whether eccentricity is allowed to vary or not. We estimate false alarm probabilities of 31%, 10%, and 6% for the 1{sigma}-2{sigma}, 2{sigma}-3{sigma}, and >3{sigma} confidence intervals, respectively.