- ID:
- ivo://CDS.VizieR/J/ApJ/899/141
- Title:
- VLBA observations of the AGN TXS 0128+554
- Short Name:
- J/ApJ/899/141
- Date:
- 14 Mar 2022 07:07:50
- Publisher:
- CDS
- Description:
- We have carried out a Chandra X-ray and multifrequency radio Very Long Baseline Array study of the active galactic nucleus (AGN) TXS0128+554, which is associated with the Fermi {gamma}-ray source 4FGLJ0131.2+5547. The AGN is unresolved in a target 19.3ks Chandra image, and its spectrum is well fit by a simple absorbed power-law model, with no distinguishable spectral features. Its relatively soft X-ray spectrum compared to other compact symmetric objects (CSOs) may be indicative of a thermal emission component, for which we were able to obtain an upper temperature limit of kT=0.08keV. The compact radio morphology and measured advance speed of 0.32c{+/-}0.07c indicate a kinematic age of only 82yr{+/-}17yr, placing TXS0128+554 among the youngest members of the CSO class. The lack of compact, inverted spectrum hotspots and an emission gap between the bright inner jet and outer radio lobe structure indicate that the jets have undergone episodic activity, and were relaunched a decade ago. The predicted {gamma}-ray emission from the lobes, based on an inverse Compton-emitting cocoon model, is three orders of magnitude below the observed Fermi-LAT flux. A comparison to other Fermi-detected and non-Fermi-detected CSOs with redshift z<0.1 indicates that the {gamma}-ray emission likely originates in the inner jet/core region, and that nearby, recently launched AGN jets are primary candidates for detection by the Fermi-LAT instrument.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/772/13
- Title:
- VLBI observations of 3C 279 at 230GHz
- Short Name:
- J/ApJ/772/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report results from five day very long baseline interferometry (VLBI) observations of the well-known quasar 3C 279 at 1.3mm (230GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of ~1pc extending along the northwest-southeast direction (P.A.=127{deg}+/-3{deg}), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of ~8x10^10^K in the 1.3mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30{mu}as (5-7 light months) resolution.
- ID:
- ivo://CDS.VizieR/J/MNRAS/464/666
- Title:
- Void Galaxy Survey, photometry and structure
- Short Name:
- J/MNRAS/464/666
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6{mu}m and 4.5{mu}m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the Sloan Digital Sky Survey Data Release 7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from M_B_=-15.5 to -20, while at the 3.6{mu}m band their magnitudes range from M_3.6_=-18 to -24. Their B-[3.6] colour and structural parameters indicate these are star-forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3x10^10^M_{sun}_. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sersic indices are nearly all smaller than n=2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.
- ID:
- ivo://CDS.VizieR/J/ApJ/766/114
- Title:
- Water and methanol masers in G75.78+0.34
- Short Name:
- J/ApJ/766/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H_2_O and CH_3_OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ~3.7x10^4^/cm3, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ~6" to the east of the cometary UCH II region, with an electron density ~1.3x10^5^/cm3, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ~2" to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30M_{sun}_. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5{mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.
- ID:
- ivo://CDS.VizieR/J/ApJ/707/1
- Title:
- Water and Methanol masers in NGC 6334I(N)
- Short Name:
- J/ApJ/707/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334 I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a re-analysis of archival VLA continuum data, Two Micron All Sky Survey and Spitzer images. As shown previously, the brightest 1.3mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6cm along with a new spatial component at 7mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH_3_OH rotation temperatures of 165+/-9K and 145+/-12K for SMA1 and SMA2, respectively. We estimate a diameter of 1400AU for the SMA1 hot-core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >~800AU separation binary that may explain the previously suggested precession of the outflow emanating from the SMA1 region. Compact line emission from SMA4 is weak, and none is seen toward SMA6. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5-4) and IRAC 4.5um emission; 24um emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6, while two others are associated with the Sandell source SM2. We also detect a total of 83 Class I CH_3_OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A46
- Title:
- W3(H2O/OH) continuum & line data cubes at 1.3mm
- Short Name:
- J/A+A/618/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The fragmentation mode of high-mass molecular clumps and the properties of the central rotating structures surrounding the most luminous objects have yet to be comprehensively characterised. We study the fragmentation and kinematics of the high-mass star-forming region W3(H_2_O), as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme CORE. Using the IRAM NOEMA and the IRAM 30m telescope, the CORE survey has obtained high-resolution observations of 20 well-known highly luminous star-forming regions in the 1.37 mm wavelength regime in both line and dust continuum emission. We present the spectral line set-up of the CORE survey and a case study for W3(H_2_O). At ~0.35" (700AU at 2.0kpc) resolution, the W3(H_2_O) clump fragments into two cores (west and east), separated by ~2300AU. Velocity shifts of a few km/s are observed in the dense-gas tracer, CH_3_CN, across both cores, consistent with rotation and perpendicular to the directions of two bipolar outflows, one emanating from each core. The kinematics of the rotating structure about W3(H_2_O) W shows signs of differential rotation of material, possibly in a disk-like object. The observed rotational signature around W3(H_2_O) E may be due to a disk-like object, an unresolved binary (or multiple) system, or a combination of both. We fit the emission of CH_3_CN (12K-11K) K=4-6 and derive a gas temperature map with a median temperature of ~165K across W3(H_2_O). We create a Toomre Q map to study the stability of the rotating structures against gravitational instability. The rotating structures appear to be Toomre unstable close to their outer boundaries, with a possibility of further fragmentation in the differentially rotating core, W3(H_2_O) W. Rapid cooling in the Toomre unstable regions supports the fragmentation scenario. Combining millimetre dust continuum and spectral line data toward the famous high-mass star-forming region W3(H_2_O), we identify core fragmentation on large scales, and indications for possible disk fragmentation on smaller spatial scales.
- ID:
- ivo://CDS.VizieR/J/A+A/490/879
- Title:
- XMM-LSS field optical identifications
- Short Name:
- J/A+A/490/879
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The XMM-Large Scale Structure survey field (XMM-LSS) is an extragalactic window surveyed in the X-ray with the XMM-Newton satellite. It has also been observed in the optical with the Canada-France Hawaii Telescope (CFHTLS survey), and in the infrared with the Spitzer Space Telescope (SWIRE survey). These surveys have been carried out to study the structure and evolution of both baryonic and dark matter on cosmological scales. In two previous papers, we presented deep low frequency radio surveys of the XMM-LSS field, with limiting flux density levels of ~4 and ~1.5mJy/beam at 325 and 610MHz respectively (5{sigma}). These radio surveys were motivated by the need to understand the various connections between the host galaxies of radio sources and their environments. In this paper, we identify optical counterparts to the low frequency radio sources, using the CFHTLS optical catalogue and images, that have an i-band limiting magnitude of i_AB_~25.
- ID:
- ivo://CDS.VizieR/J/PASJ/70/S36
- Title:
- X-ray-bright optically faint AGN
- Short Name:
- J/PASJ/70/S36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg^2^, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi>10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit logNH=20.5-23.5cm^-2^ in most cases). The absorption-corrected X-ray luminosities are in the range of 6x10^42^-2x10^45^erg/s. Twenty objects are classified as type 2 quasars based on X-ray luminosity and NH. The optical faintness is explained by a combination of redshifts (mostly z>1.0), strong dust extinction, and in part a large ratio of dust/gas.
- ID:
- ivo://CDS.VizieR/J/AJ/139/1066
- Title:
- X-ray view of NGC 2403 central region
- Short Name:
- J/AJ/139/1066
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Archival Chandra observations are used to study the X-ray emission associated with star formation in the central region of the nearby SAB(s)cd galaxy NGC 2403. The distribution of X-ray emission is compared to the morphology visible at other wavelengths using complementary Spitzer, Galaxy Evolution Explorer, and ground-based H{alpha} imagery.
- ID:
- ivo://CDS.VizieR/J/A+A/518/L73
- Title:
- Youngest massive protostars in the LMC
- Short Name:
- J/A+A/518/L73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We demonstrate the unique capabilities of Herschel to study very young luminous extragalactic young stellar objects (YSOs) by analyzing a central strip of the Large Magellanic Cloud obtained through the HERITAGE Science Demonstration Program. We combine PACS 100 and 160, and SPIRE 250, 350, and 500um photometry with 2MASS (1.25-2.17um) and Spitzer IRAC and MIPS (3.6-70um) to construct complete spectral energy distributions (SEDs) of compact sources. From these, we identify 207 candidate embedded YSOs in the observed region, ~40% never-before identified. We discuss their position in far-infrared color-magnitude space, comparing with previously studied, spectroscopically confirmed YSOs and maser emission. All have red colors indicating massive cool envelopes and great youth. We analyze four example YSOs, determining their physical properties by fitting their SEDs with radiative transfer models. Fitting full SEDs including the Herschel data requires us to increase the size and mass of envelopes included in the models. This implies higher accretion rates (greater or equal to 10^-4^M_{sun}_/yr), in agreement with previous outflow studies of high-mass protostars. Our results show that Herschel provides reliable longwave SEDs of large samples of high-mass YSOs; discovers the youngest YSOs whose SEDs peak in Herschel bands; and constrains the physical properties and evolutionary stages of YSOs more precisely than was previously possible.