- ID:
- ivo://CDS.VizieR/J/MNRAS/419/1887
- Title:
- Young stellar objects in NGC 6823
- Short Name:
- J/MNRAS/419/1887
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6823 is a young open cluster that lies at a distance of ~2kpc in the Vulpecula OB1 association. Previous studies using CCD photometry and spectroscopy have identified a Trapezium system of bright O- and B-type stars at its centre, along with several massive O-, B- and A-type stars in the cluster. We present optical VRI and near-infrared JHK photometric observations, complemented with Spitzer/Infrared Array Camera archival data, with an aim to identify the young low-mass population and the disc candidates in this region. Our survey reaches down to I~22mag and K_s_~18mag. There is significant differential reddening within the cluster. We find a bimodal distribution for A_V_, with a peak at ~3mag and a broader peak at ~10mag. We have classified the sources based on the [4.5]-[8] colour, which is least affected by extinction. We find a ~20 per cent fraction of Class I/Class II young stellar objects (YSOs) in the cluster, while a large 80 per cent fraction of the sources have a Class III classification. We have made use of the INT Photometric H{alpha} Survey (IPHAS) in order to probe the strength in H{alpha} emission for this large population of Class III sources. Nearly all of the Class III objects have photospheric (r'-H{alpha}) colours, implying an absence of H{alpha} in emission. This large population of Class III sources is thus likely the extinct field star population rather than the discless YSOs in the cluster. There is a higher concentration of the Class I/II systems in the eastern region of the cluster and close to the central Trapezium. The western part of the cluster mostly contains Class III/field stars and seems devoid of disc sources. We find evidence of a pre-main-sequence population in NGC 6823, in addition to an upper main-sequence population. The pre-main-sequence population mainly consists of young disc sources with ages between ~1 and 5Myr, and at lower masses of ~0.1-0.4M_{sun}_. There may be a possible mass-dependent age spread in the cluster, with the older stars being more massive than the younger ones. The presence of young disc sources in NGC 6823 indicates similar star formation properties in the outer regions of the Galaxy as observed for young clusters in the solar neighbourhood.
« Previous |
531 - 536 of 536
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/820/90
- Title:
- 4yr 1.3mm VLBI observations of SgrA* with EHT
- Short Name:
- J/ApJ/820/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over four years. Closure phases, which are the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180{deg} rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.
- ID:
- ivo://CDS.VizieR/J/A+A/599/A37
- Title:
- YSO candidates in IRAS 20319+3958
- Short Name:
- J/A+A/599/A37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globules and pillars, impressively revealed by the Spitzer and Herschel satellites, for example, are pervasive features found in regions of massive star formation. Studying their embedded stellar populations can provide an excellent laboratory to test theories of triggered star formation and the features that it may imprint on the stellar aggregates resulting from it. We studied the globule IRAS 20319+3958 in Cygnus X by means of visible and near-infrared imaging and spectroscopy, complemented with mid-infrared Spitzer/IRAC imaging, in order to obtain a census of its stellar content and the nature of its embedded sources. Our observations show that the globule contains an embedded aggregate of about 30 very young (<~1Myr) stellar objects, for which we estimate a total mass of ~90M_{sun}_. The most massive members are three systems containing early B-type stars. Two of them most likely produced very compact HII regions, one of them being still highly embedded and coinciding with a peak seen in emission lines characterising the photon dominated region (PDR). Two of these three systems are resolved binaries, and one of those contains a visible Herbig Be star. An approximate derivation of the mass function of the members of the aggregate gives hints of a slope at high masses shallower than the classical Salpeter slope, and a peak of the mass distribution at a mass higher than that at which the widely adopted log-normal initial mass function peaks. The emission distribution of H_2_ and Brackett gamma, tracing the PDR and the ionised gas phase, respectively, suggests that molecular gas is distributed as a shell around the embedded aggregate, filled with centrally-condensed ionised gas. Both, the morphology and the low excitation of the HII region, indicate that the sources of ionisation are the B stars of the embedded aggregate, rather than the external UV field caused by the O stars of Cygnus OB2. The youth of the embedded cluster, combined with the isolation of the globule, suggests that star formation in the globule was triggered by the passage of the ionisation front.
- ID:
- ivo://CDS.VizieR/J/A+A/549/A130
- Title:
- YSOs in Herschel-Hi-GAL survey
- Short Name:
- J/A+A/549/A130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Herschel survey of the Galactic plane (Hi-GAL) provides a unique opportunity to study star formation over large areas of the sky and different environments in the Milky Way. We use the best-studied Hi-GAL fields to date, two 2{deg}x2{deg} tiles centered on (l,b)=(30{deg}, 0{deg}) and (l,b)=(59{deg},0{deg}), to study the star formation activity in these regions of the sky using a large sample of well-selected young stellar objects (YSOs). We used the science demonstration phase Hi-GAL fields, where a tremendous effort has been made to identify the newly formed stars and to derive their properties as accurately as possible, e.g. distance, bolometric luminosity, envelope mass, and stage of evolution. We estimated the star formation rate (SFR) for these fields using the number of candidate YSOs and their average time scale to reach the zero age main sequence, and compared it with the rate estimated using their integrated luminosity at 70um, combined with an extragalactic star formation indicator.
- ID:
- ivo://CDS.VizieR/J/ApJ/854/158
- Title:
- z<0.5 PG quasars IR energy distributions
- Short Name:
- J/ApJ/854/158
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The interstellar medium is crucial to understanding the physics of active galaxies and the coevolution between supermassive black holes and their host galaxies. However, direct gas measurements are limited by sensitivity and other uncertainties. Dust provides an efficient indirect probe of the total gas. We apply this technique to a large sample of quasars, whose total gas content would be prohibitively expensive to measure. We present a comprehensive study of the full (1 to 500{mu}m) infrared spectral energy distributions of 87 redshift <0.5 quasars selected from the Palomar-Green sample, using photometric measurements from 2MASS, WISE, and Herschel, combined with Spitzer mid-infrared (5-40{mu}m) spectra. With a newly developed Bayesian Markov Chain Monte Carlo fitting method, we decompose various overlapping contributions to the integrated spectral energy distribution, including starlight, warm dust from the torus, and cooler dust on galaxy scales. This procedure yields a robust dust mass, which we use to infer the gas mass, using a gas-to-dust ratio constrained by the host galaxy stellar mass. Most (90%) quasar hosts have gas fractions similar to those of massive, star-forming galaxies, although a minority (10%) seem genuinely gas-deficient, resembling present-day massive early-type galaxies. This result indicates that "quasar mode" feedback does not occur or is ineffective in the host galaxies of low-redshift quasars. We also find that quasars can boost the interstellar radiation field and heat dust on galactic scales. This cautions against the common practice of using the far-infrared luminosity to estimate the host galaxy star formation rate.
- ID:
- ivo://CDS.VizieR/J/ApJ/712/942
- Title:
- z>4 submillimeter galaxies
- Short Name:
- J/ApJ/712/942
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The existence of submillimeter-selected galaxies (SMGs) at redshifts z>4 has recently been confirmed. Simultaneously using all the available data from UV to radio, we have modeled the spectral energy distributions of the six known spectroscopically confirmed SMGs at z>4. We find that their star formation rates (average ~2500M_{sun}_/yr), stellar (~3.6x10^11^M_{sun}_) and dust (~6.7x10^8^M_{sun}_) masses, extinction (A_V_~2.2mag), and gas-to-dust ratios (~60) are within the ranges for 1.7<z<3.6 SMGs. Our analysis suggests that infrared-to-radio luminosity ratios of SMGs do not change up to redshift ~5 and are lower by a factor of ~2.1 than the value corresponding to the local IR-radio correlation. However, we also find dissimilarities between z>4 and lower-redshift SMGs. Those at z>4 tend to be among the most star-forming, least massive, and hottest (~60K) SMGs and exhibit the highest fraction of stellar mass formed in the ongoing starburst (~45%).