- ID:
- ivo://CDS.VizieR/J/ApJ/868/32
- Title:
- A large moving group within the LCC association
- Short Name:
- J/ApJ/868/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Scorpius-Centaurus is the nearest OB association, and its hundreds of members are divided into subgroups, including the Lower Centaurus Crux (LCC). Here we study the dynamics of the LCC area. We report the revelation of a large moving group containing more than 1800 intermediate- and low-mass young stellar objects and brown dwarfs that escaped identification until Gaia DR2 allowed a kinematic and photometric selection to be performed. We investigate the stellar and substellar content of this moving group using the Gaia DR2 astrometric and photometric measurements. The median distance of the members is 114.5pc, and 80% lie between 102 and 135pc from the Sun. Our new members cover a mass range of 0.02-5M_{sun}_ and add up to a total mass of about 700M_{sun}_. The present-day mass function follows a log-normal law with m_c_=0.22M_{sun}_ and {sigma}=0.64. We find more than 200 brown dwarfs in our sample. The star formation rate had its maximum of 8x10^-5^M_{sun}_/yr about 9Myr ago. We grouped the new members into four denser subgroups, which have increasing age from 7 to 10Myr, surrounded by "free-floating" young stars with mixed ages. Our isochronal ages, now based on accurate parallaxes, are compatible with several earlier studies of the region. The whole complex is presently expanding, and the expansion started between 8 and 10Myr ago. Two hundred members show infrared excess compatible with circumstellar disks from full to debris disks. This discovery provides a large sample of nearby young stellar and substellar objects for disk and exoplanet studies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/883/6
- Title:
- AllWISE & NEOWISE LCs of Red MSX massive YSOs
- Short Name:
- J/ApJ/883/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We systematically investigate the mid-infrared (MIR; {lambda}>3{mu}m) time variability of uniformly selected ~800 massive young stellar objects (MYSOs) from the Red Midcourse Space Experiment Source survey. Out of the 806 sources, we obtain reliable 9yr long MIR magnitude variability data of 331 sources at the 3.4{mu}m (W1) and 4.6{mu}m (W2) bands by cross-matching the MYSO positions with ALLWISE and NEOWISE catalogs. After applying the variability selections using ALLWISE data, we identify five MIR-variable candidates. The light curves show various classes, with the periodic, plateau-like, and dipper features. Out of the obtained two color-magnitude diagram of W1 and W1-W2, one shows "bluer when brighter and redder when fainter" trends in variability, suggesting change in extinction or accretion rate. Finally, our results show that G335.9960-00.8532 has a periodic light curve, with an ~690d cycle. Spectral energy density model fitting results indicate that G335.9960-00.8532 is a relatively evolved MYSO; thus, we may be witnessing the very early stages of a hyper- or ultra-compact HII region, a key source for understanding MYSO evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/826/16
- Title:
- ALMA and GeMS observations of the OMC1 region
- Short Name:
- J/ApJ/826/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing ~600 near-IR-identified young stars, around which we can search for sub-millimeter emission tracing dusty disks. Approximately 100 sources are known proplyds identified with the Hubble Space Telescope. We detect continuum emission at 1mm wavelengths toward ~20% of the proplyd sample, and ~8% of the larger sample of near-IR objects. The noise in our maps allows 4{sigma} detection of objects brighter than ~1.5mJy, corresponding to protoplanetary disk masses larger than 1.5M_J_ (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C^18^O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in Orion Nebula cluster (ONC) disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.
- ID:
- ivo://CDS.VizieR/J/ApJ/860/124
- Title:
- ALMA continuum emission obs. of MWC 758 disk
- Short Name:
- J/ApJ/860/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spatially resolved structures in protoplanetary disks hint at unseen planets. Previous imaging observations of the transitional disk around MWC 758 revealed an inner cavity, a ring-like outer disk, emission clumps, and spiral arms, all possibly generated by companions. We present ALMA dust continuum observations of MWC 758 at 0.87mm wavelength with 43x39mas angular resolution (6.9x6.2au) and 20{mu}Jy/beam rms. The central submillimeter emission cavity is revealed to be eccentric; once deprojected, its outer edge can be well fitted by an ellipse with an eccentricity of 0.1 and one focus on the star. The broad ring-like outer disk is resolved into three narrow rings with two gaps in between. The outer two rings tentatively show the same eccentricity and orientation as the innermost ring bounding the inner cavity. The two previously known dust emission clumps are resolved in both the radial and azimuthal directions, with radial widths equal to ~4x the local scale height. Only one of the two spiral arms previously imaged in near-infrared (NIR) scattered light is revealed in ALMA dust emission, at a slightly larger stellocentric distance owing to projection effects. We also submit evidence of disk truncation at ~100au based on comparing NIR imaging observations with models. The spirals, the north clump, and the truncated disk edge are all broadly consistent with the presence of one companion exterior to the spirals at roughly 100au.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A161
- Title:
- ALMA images of HD 135344B
- Short Name:
- J/A+A/619/A161
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spiral arms, rings and large scale asymmetries are structures observed in high resolution observations of protoplanetary disks, and it appears that some of the disks showing spiral arms in scattered light also show asymmetries in millimeter-sized dust. HD 135344B is one of these disks. Planets are invoked as the origin of these structures, but no planet has been observed so far and up per limits are becoming more stringent with time. We want to investigate the nature of the asymmetric structure in the HD 135344B disk in order to understand the origin of the spirals and of the asymmetry seen in this disk. Ultimately, we aim at understanding whether or not one or more planets are needed to explain such structures. We present new ALMA sub-0.1" resolution observations at optically thin wavelengths (lambda=2.8mm and 1.9mm) of the HD 135344B disk. The high spatial resolution allows us to unambiguously characterize the mm-dust morphology of the disk. The low optical depth of continuum emission probes the bulk of the dust content of the vortex. Moreover, we combine the new observations with archival data at shorter wavelengths to perform a multi-wavelength analysis and to obtain information about the dust distribution and properties inside the observed asymmetry. We resolve the asymmetric disk into a symmetric ring + asymmetric crescent, and observe that: (1) the spectral index strongly decreases at the center of the vortex, consistent with the presence of large grains; (2) for the first time, an azimuthal shift of the peak of the vortex with wavelength is observed; (3) the azimuthal width of the vortex decreases at longer wavelengths, as expected for dust traps. These features allow to confirm the nature of the asymmetry as a vortex. Finally, under the assumption of optically thin emission, a lower limit to the total mass of the vortex is 0.3M_Jupiter_. Considering the uncertainties involved in this estimate, it is possible that the actual mass of the vortex is higher and possibly within the required values (~4M_Jupiter_) to launch spiral arms similar to those observed in scattered light. If this is the case, no outer planet is needed to explain the morphology.
- ID:
- ivo://CDS.VizieR/J/A+A/627/L6
- Title:
- ALMA Long Baseline maps of G17.64+0.16
- Short Name:
- J/A+A/627/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the highest angular resolution (20x15mas - 44x33au) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations currently possible of the proto-O-star G17.64+0.16 in Band 6. The Cycle 5 observations with baselines out to 16 km probes scales <50au and reveal the rotating disc around G17.64+0.16, a massive forming O-type star. The disc has a ring-like enhancement in the dust emission, especially visible as arc structures to the north and south. The Keplerian kinematics are most prominently seen in the vibrationally excited water line, H_2_O (Eu=3461.9K). The mass of the central source found by modelling the Keplerian rotation is consistent with 45+/-10M_{sun}_. The H30alpha (231.9GHz) radio-recombination line and the SiO (5-4) molecular line were detected at up to the 10-sigma level. The estimated disc mass is 0.6-2.6M_{sun}_ under the optically thin assumption. Analysis of the Toomre Q parameter, in the optically thin regime, indicates that the disc stability is highly dependent on temperature. The disc currently appears stable for temperatures >150K, this does not preclude that the substructures formed earlier through disc fragmentation.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A31
- Title:
- ALMA maps of G17.64+0.16
- Short Name:
- J/A+A/620/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high angular resolution (~0.2") continuum and molecular emission line Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of G17.64+0.16 in Band 6 (220-230GHz) taken as part of a campaign in search of circumstellar discs around (proto)-O-stars. At a resolution of ~400au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. We detect SiO (5-4) emission that is marginally resolved and elongated in a direction perpendicular to the large-scale outflow seen in the ^13^CO (2-1) line using the main ALMA array in conjunction with the Atacama Compact Array (ACA). Morphologically, the SiO appears to represent a disc-like structure. Using parametric models we show that the position-velocity profile of the SiO is consistent with the Keplerian rotation of a disc around an object between 10-30M_{sun}_ in mass, only if there is also radial expansion from a separate structure. The radial motion component can be interpreted as a disc wind from the disc surface. Models with a central stellar object mass between 20 and 30M_{sun}_ are the most consistent with the stellar luminosity 1x10^5^L_{sun}_) and indicative of an O-type star. The H30{alpha} millimetre recombination line (231.9GHz) is also detected, but spatially unresolved, and is indicative of a very compact, hot, ionised region co-spatial with the dust continuum core. The broad line-width of the H30{alpha} emission (Full-Width-Half-Maximum=81.9km/s is not dominated by pressure-broadening but is consistent with underlying bulk motions. These velocities match those required for shocks to release silicon from dust grains into the gas phase. CH_3_CN and CH_3_OH thermal emission also shows two arc shaped plumes that curve away from the disc plane. Their coincidence with OH maser emission suggests that they could trace the inner working surfaces of a wide-angle wind driven by G17.64 which impacts the diffuse remnant natal cloud before being redirected into the large-scale outflow direction. Accounting for all observables, we suggest that G17.64 is consistent with a O-type young stellar object in the final stages of protostellar assembly, driving a wind, but that has not yet developed into a compact HII region. The existence and detection of the disc in G17.64 is likely related to its isolated and possibly more evolved nature, traits which may underpin discs in similar sources.
- ID:
- ivo://CDS.VizieR/J/ApJ/831/125
- Title:
- ALMA 887{mu}m obs. of ChaI star-forming region
- Short Name:
- J/ApJ/831/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887{mu}m survey of the disk population around objects from ~2 to 0.03M_{sun}_ in the nearby ~2Myr old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887{mu}m flux densities into dust disk masses, hereafter M_dust_. We find that the M_dust_-M_*_ relation is steeper than linear and of the form M_dust_{propto}(M_*_)^1.3-1.9^, where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr old regions of Taurus, Lupus, and Chamaeleon I share the same M_dust_-M_*_ relation, while the 10 Myr old Upper Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.
- ID:
- ivo://CDS.VizieR/J/ApJ/860/82
- Title:
- ALMA obs. of polarization in the IM Lup disk
- Short Name:
- J/ApJ/860/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 870{mu}m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72{mu}m) and IM Lup (61{mu}m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.
- ID:
- ivo://CDS.VizieR/J/ApJ/842/L9
- Title:
- ALMA obs. of polarized dust emission from Ser-emb 8
- Short Name:
- J/ApJ/842/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (~80000au) to disk (~100au) scales. We compare our observations with four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvenic (weakly magnetized) to sub-Alfvenic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ~100au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence-not the magnetic field-that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.