We present the results of ammonia observations towards 66 massive star forming regions identified by the Red Midcourse Space Experiment Source survey. We have used the Green Bank Telescope and the K-Band Focal Plane Array to map the ammonia (NH_3_) (1,1) and (2,2) inversion emission at a resolution of 30 arcsec in 8 arcmin regions towards the positions of embedded massive star formation. We have identified a total of 115 distinct clumps, approximately two-thirds of which are associated with an embedded massive young stellar object or compact HII region, while the others are classified as quiescent. There is a strong spatial correlation between the peak NH3 emission and the presence of embedded objects. We derive the spatial distribution of the kinetic gas temperatures, line widths, and NH3 column densities from these maps, and by combining these data with dust emission maps we estimate clump masses, H_2_ column densities and ammonia abundances. The clumps have typical masses of ~1000M_{sun}_ and radii ~0.5pc, line widths of ~2km/s and kinetic temperatures of ~16-20K. We find no significant difference between the sizes and masses of the star-forming and quiescent subsamples; however, the distribution maps reveal the presence of temperature and line width gradients peaking towards the centre for the star-forming clumps while the quiescent clumps show relatively uniform temperatures and line widths throughout. Virial analysis suggests that the vast majority of clumps are gravitationally bound and are likely to be in a state of global free fall in the absence of strong magnetic fields. The similarities between the properties of the two subsamples suggest that the quiescent clumps are also likely to form massive stars in the future, and therefore provide an excellent opportunity to study the initial conditions of massive pre-stellar and protostellar clumps.
The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, well-selected sample of massive young stellar objects (MYSOs). We have identified ~2000 MYSO candidates located throughout the Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of these follow-up observations is to identify other objects with similar colours such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. To identify the populations of UCHII regions and PNe within the sample and examine their Galactic distribution. We have conducted high resolution radio continuum observations at 6cm towards 659 MYSO candidates in the northern hemisphere (10{deg}<l<250{deg}) using the Very Large Array (VLA). These observations have a spatial resolution of ~1-2" and typical image rms noise values of ~0.22mJy - sensitive enough to detect a HII region powered by B0.5 star at the far side of the Galaxy. In addition to these targeted observations we present archival data towards a further 315 RMS sources extracted from a previous VLA survey of the inner Galaxy.
The Red MSX Source (RMS) survey is an ongoing effort to return a large, well-selected sample of massive young stellar objects (MYSOs) within our Galaxy. 2000 candidates have been colour-selected from the Mid-course Space Experiment (MSX) point source catalogue (PSC). A series of ground-based follow-up observations are being undertaken in order to remove contaminant objects (ultra-compact HII (UCHII) regions, planetary nebulae (PN), evolved stars), and to begin characterising these MYSOs. As a part of these follow-up observations, high resolution (~1") mid-IR imaging aids the identification of contaminant objects which are resolved (UCHII regions, PN) as opposed to those which are unresolved (YSOs, evolved stars) as well as identifying YSOs near UCHII regions and other multiple sources. We present 10.4{mu}m imaging observations for 346 candidate MYSOs in the RMS survey in the Southern Hemisphere, primarily outside the region covered by the GLIMPSE Spitzer Legacy Survey. These were obtained using TIMMI2 on the ESO 3.6m telescope in La Silla, Chile. Our photometric accuracy is of order 0.05Jy, and our astrometric accuracy is 0.8", which is an improvement over the nominal 2" accuracy of the MSX PSC.
The Rosette nebula is an HII region ionized mainly by the stellar cluster NGC 2244. Elephant trunks, globules, and globulettes are seen at the interface where the HII region and the surrounding molecular shell meet. We have observed a field in the northwestern part of the Rosette nebula where we study the small globules protruding from the shell. Our aim is to measure their properties and study their star-formation history in continuation of our earlier study of the features of the region. We imaged the region in broadband near-infrared (NIR) JsHKs filters and narrowband H_2_ 1-0 S(1), P{beta}, and continuum filters using the SOFI camera at the ESO/NTT. The imaging was used to study the stellar population and surface brightness, create visual extinction maps, and locate star formation. Mid-infrared (MIR) Spitzer IRAC and WISE and optical NOT images were used to further study the star formation and the structure of the globules. The NIR and MIR observations indicate an outflow, which is confirmed with CO observations made with APEX.
We present the results of a near-infrared time-series photometry study in the field of Cygnus OB2 association (RA~20.55h, DE~41.2{deg}). Observations were carried out in the JHK bands at the WFCAM/UKIRT telescope over 112 observed nights. We investigated the occurrence of periodicity in the time-series and we found reliable periods for 894 candidate members.
RX J1604.3-2130A is a young, dipper-type, variable star in the Upper Scorpius association, suspected to have an inclined inner disk with respect to its face-on outer disk. We study the eclipses to constrain the inner disk properties. We use time-resolved photometry from the Rapid Eye Mount telescope and Kepler 2 data to study the multi-wavelength variability, and archival optical and IR data to track accretion, rotation, and changes in disk structure. The observations reveal details of the structure and matter transport through the inner disk. The eclipses show 5d quasi-periodicity, with the phase drifting in time and some periods showing increased/decreased eclipse depth and frequency. Dips are consistent with extinction by slightly processed dust grains in an inclined, irregularly-shaped inner disk locked to the star through two relatively stable accretion structures. The grains are located near the dust sublimation radius (~0.09au) at the corotation radius, and can explain the shadows observed in the outer disk. The total mass (gas and dust) required to produce the eclipses and shadows is a few % of a Ceres mass. Such amount of mass is accreted/replenished by accretion in days to weeks, which explains the variability from period to period. Spitzer and WISE variability reveal variations in the dust content in the innermost disk on a few years timescale, which is consistent with small imbalances (compared to the stellar accretion rate) in the matter transport from the outer to the inner disk. A decrease in the accretion rate is observed at the times of less eclipsing variability and low mid-IR fluxes, confirming this picture. The vsini=16km/s confirms that the star cannot be aligned with the outer disk, but is likely close to equator-on and to be aligned with the inner disk. This anomalous orientation is a challenge for standard theories of protoplanetary disk formation.
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and HII regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample.
The Spitzer Space Telescope Legacy Program SAGE-SMC allows global studies of resolved stellar populations in the SMC in a different environment than our Galaxy. Using the SAGE-SMC IRAC (3.6-8.0{mu}m) and MIPS (24 and 70{mu}m) catalogs and images combined with near-infrared (JHK_s_) and optical (UBVI) data, we identified a population of ~1000 intermediate - to high-mass young stellar objects (YSOs) in the SMC (three times more than previously known). Our method of identifying YSO candidates builds on the method developed for the Large Magellanic Cloud by Whitney et al. (2008, J/AJ/136/18) with improvements based on what we learned from our subsequent studies and techniques described in the literature. We perform (1) color-magnitude cuts based on five color-magnitude diagrams (CMDs), (2) visual inspection of multi-wavelength images, and (3) spectral energy distribution (SED) fitting with YSO models. For each YSO candidate, we use its photometry to calculate a measure of our confidence that the source is not a non-YSO contaminant, but rather a true YSO, based on the source's location in the color-magnitude space with respect to non-YSOs. We use this CMD score and the SED fitting results to define two classes of sources: high-reliability YSO candidates and possible YSO candidates. We found that, due to polycyclic aromatic hydrocarbon emission, about half of our sources have [3.6]-[4.5] and [4.5]-[5.8] colors not predicted by previous YSO models. The YSO candidates are spatially correlated with gas tracers.
The abundance of key molecules determines the level of cooling that is necessary for the formation of stars and planetary systems. In this context, one needs to understand the details of the time dependent oxygen chemistry, leading to the formation of molecular oxygen and water. We aim to determine the degree of correlation between the occurrence of O2 and HOOH (hydrogen peroxide) in star-forming molecular clouds. We first detected O2 and HOOH in the rho Ophiuchi cloud (core A), we now search for HOOH in Orion Molecular Cloud OMC A, where O2 has also been detected. We mapped a 3x3arcmin^2^ region around Orion H_2_-Peak 1 with the Atacama Pathfinder Experiment (APEX). In addition to several maps in two transitions of HOOH, viz. 219.17GHz and 251.91GHz, we obtained single-point spectra for another three transitions towards the position of maximum emission. Line emission at the appropriate LSR-velocity (Local Standard of Rest) and at the level of greater or equal to 4{sigma} was found for two transitions, with lower S/N (2.8-3.5{sigma}) for another two transitions, whereas for the remaining transition, only an upper limit was obtained. The emitting region, offset 18arcsec south of H_2_-Peak 1, appeared point-like in our observations with APEX. Conclusions: The extremely high spectral line density in Orion makes the identification of HOOH much more difficult than in rho Oph A. As a result of having to consider the possible contamination by other molecules, we left the current detection status undecided.
We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the GB. We compile extinction corrected spectral energy distributions for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0+I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background Asymptotic Giant Branch stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40-0.78Myr for Class 0+I YSOs and 0.26-0.50Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0+I sample is classified as Class 0, leading to durations of 0.13-0.26Myr (Class 0) and 0.27-0.52Myr (Class I). We revisit infrared color-color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs.