- ID:
- ivo://CDS.VizieR/J/ApJ/764/114
- Title:
- BVRI photometry of stars in Orion A
- Short Name:
- J/ApJ/764/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We extend our previous study of the stellar population of L1641, the lower-density star-forming region of the Orion A cloud south of the dense Orion Nebula Cluster (ONC), with the goal of testing whether there is a statistically significant deficiency of high-mass stars in low-density regions. Previously, we compared the observed ratio of low-mass stars to high-mass stars with theoretical models of the stellar initial mass function (IMF) to infer a deficiency of the highest-mass stars in L1641. We expand our population study to identify the intermediate-mass (late B to G) L1641 members in an attempt to make a more direct comparison with the mass function of the nearby ONC. The spectral-type distribution and the K-band luminosity function of L1641 are similar to those of the ONC, but problems of incompleteness and contamination prevent us from making a detailed test for differences. We limit our analysis to statistical tests of the ratio of high-mass to low-mass stars, which indicate a probability of only 3% that the ONC and the southern region of L1641 were drawn from the same population, supporting the hypothesis that the upper-mass end of the IMF is dependent on environmental density.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/795/L26
- Title:
- Candidate eruptive young stars in Lynds 1340
- Short Name:
- J/ApJ/795/L26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23L_{sun}_<L_bol_<59L_{sun}_. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our H{alpha} survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASSJ02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [SII] and H{alpha} images, as well as the Spitzer Infrared Array Camera 4.5{mu}m images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/49
- Title:
- Candidate YSOs in AFGL 333 with NEWFIRM & Spitzer
- Short Name:
- J/ApJ/822/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the key questions in the field of star formation is the role of stellar feedback on the subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the massive stars in W4. This paper presents a study of the star formation activity within AFGL 333, a ~10^4^M_{sun}_ cloud within W3, using deep JHKs photometry obtained from the NOAO Extremely Wide Field Infrared Imager combined with Spitzer IRAC and MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects (YSOs) in the complex, of which 99 are Class I and 713 are Class II sources. The stellar density analysis of YSOs reveals three major stellar aggregates within AFGL333, namely AFGL 333 Main, AFGL 333 NW1 and AFGL 333 NW2. The disk fraction within AFGL 333 is estimated to be ~50%-60%. We use the extinction map made from the H-K_s_ colors of the background stars and CO data to understand the cloud structure and to estimate the cloud mass. From the stellar and cloud mass associated with AFGL 333, we infer that the region is currently forming stars with an efficiency of ~4.5% and at a rate of ~2-3M_{sun}_/Myr/pc^2^. In general, the star formation activity within AFGL 333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL 333 region.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A109
- Title:
- Carina nebula optically identified YSOs
- Short Name:
- J/A+A/567/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The low obscuration and proximity of the Carina nebula make it an ideal place to study the ongoing star formation process and impact of massive stars on low-mass stars in their surroundings. To investigate this process, we have generated a new catalogue of the pre-main-sequence (PMS) stars in the Carina west (CrW) region and studied their nature and spatial distribution. We have also determined various parameters (reddening, reddening law, age, mass) which are further used to estimate the initial mass function (IMF) and K-band luminosity function (KLF) for the region under study. We obtained deep UBVRI H{alpha} photometric data of the field situated to the west of the main Carina nebula and centered around WR22. Medium-resolution optical spectroscopy of a subsample of X-ray selected objects along with archival data sets from Chandra, XMM-Newton and 2MASS surveys are used for the present study. Our spectroscopic results indicate that the majority of the X-ray sources are late spectral type stars. The region shows a large amount of differential reddening with minimum and maximum values of E(B-V) as 0.25 and 1.1mag, respectively. Our analysis reveals that the total to selective absorption ratio R_V_ is ~3.7+/-0.1 suggesting an abnormal grain size in the observed region. We identify 467 young stellar objects (YSOs) and study their characteristics. The ages and masses of the 241 optically identified YSOs range from ~0.1 to 10Myr and ~0.3 to 4.8M_{sun}_, respectively. However, the majority of them are younger than 1Myr and have masses below 2M_{sun}_. The high mass star WR22 does not seem to have contributed to the formation of YSOs in the CrW region. The initial mass function slope, Gamma in this region is found to be -1.13+/-0.20 in the mass range of 0.5<M/M_{sun}_<4.8. The K-band luminosity function slope ({alpha}) is also estimated as 0.31+/-0.01. We also performed minimum spanning tree analysis of the YSOs in this region which reveals that there are at least ten YSO cores associated with the molecular cloud and that leads to an average core radius and median branch length 0.43pc and 0.28pc, respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/584/A91
- Title:
- Catalog of dense cores in Aquila from Herschel
- Short Name:
- J/A+A/584/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11deg^2^ area of the Aquila molecular cloud complex at d~260pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70-micron to 500-micron. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% +/-10% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to A_V_~7, and ~75% of them lie within filamentary structures with supercritical masses per unit length >~16M_{sun}_/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at A_V_>7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic "efficiency" SFR/M_dense_~5+/-2x10^-8^yr^-1^ for the star formation process in dense gas.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A74
- Title:
- Catalog of dense cores in Oph molecular cloud
- Short Name:
- J/A+A/638/A74
- Date:
- 02 Mar 2022 11:56:27
- Publisher:
- CDS
- Description:
- Herschel observations of nearby clouds in the Gould Belt support a paradigm for low-mass star formation, starting with the generation of molecular filaments, followed by filament fragmentation, and the concentration of mass into self-gravitating prestellar cores. With the unique far-infrared and submillimeter continuum imaging capabilities of the Herschel Space observatory, the closeby (d=139pc) Ophiuchus cloud was mapped at five wavelengths from 70 microns to 500 microns with the aim of providing a complete census of dense cores in this region, including unbound starless cores, bound prestellar cores, and protostellar cores. Taking advantage of the high dynamic range and multi-wavelength nature of the Herschel data, we used the multi-scale decomposition algorithms getsources and getfilaments to identify a complete sample of dense cores and filaments in the cloud and study their properties. The densest clouds of the Ophiuchus complex, L1688 and L1689, which thus far are only indirectly described as filamentary regions owing to the spatial distribution of their young stellar objects (YSOs), are confirmed to be dominated by filamentary structures. The tight correlation observed between prestellar cores and filamentary structures in L1688 and L1689 supports the view that solar-type star formation occurs primarily in dense filaments. While the sub clouds of the complex show disparities, L1689 being less efficient than L1688 at forming stars when considering their total mass budgets, both sub clouds share almost the same prestellar core formation efficiency in dense molecular gas. We also find evidence in the Herschel data for a remarkable concentric geometrical configuration in L1688 which is dominated by up to three arc-like compression fronts and presumably created by shockwave events emanating from the Sco OB2 association, including the neighboring massive (O9V) star sigma Sco.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A34
- Title:
- Catalog of dense cores in Orion B from Herschel
- Short Name:
- J/A+A/635/A34
- Date:
- 14 Jan 2022 08:07:23
- Publisher:
- CDS
- Description:
- We present a detailed study of the Orion B molecular cloud complex (d~400pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70-micron to 500-micron as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC2023 and 2024, NGC2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490-804 (~28-45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be t_pre_^OrionB^=1.7(-0.6/+0.8)Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5Msun (in dN/dlogM format) and is consistent with a power-law with logarithmic slope -1.27+/-0.24 at the high-mass end, compared to the Salpeter slope of -1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value A_V_^bg^~7mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at A_V_^bg^<5 and a regime with higher, roughly constant CFE at A_V_^bg^>~10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above A_V_^bg^>~7mag. About 60-80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.
- ID:
- ivo://CDS.VizieR/V/112A
- Title:
- Catalog of Star-Forming Regions in the Galaxy
- Short Name:
- V/112A
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This Catalog of Star-Forming Regions in the Galaxy contains coordinates and fluxes of young objects in the radio and infrared, as well as data on the radial velocities of recombination and molecular lines, for more than three thousand star-forming regions. In addition to photometric and kinematic data, we present information on diffuse and reflecting nebulae, dark and molecular clouds, and other objects related to young stars. The catalog consists of two parts. The main catalog lists star-forming regions in order of Galactic longitude and is supplemented by analogous information for star-forming regions in complexes of dark clouds with large angular sizes that are closest to the Sun. In our preliminary study of the catalog data using a formal classification of the star-forming regions, we subdivided these objects into several classes and characterized them as being populated primarily by massive or low-mass stars at early or late stages of the star-formation process. We also distinguish between relatively nearby and distant complexes.
- ID:
- ivo://CDS.VizieR/J/AJ/153/95
- Title:
- Catalog of Suspected Nearby Young Stars
- Short Name:
- J/AJ/153/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new nearby young moving group (NYMG) kinematic membership analysis code, LocAting Constituent mEmbers In Nearby Groups (LACEwING), a new Catalog of Suspected Nearby Young Stars, a new list of bona fide members of moving groups, and a kinematic traceback code. LACEwING is a convergence-style algorithm with carefully vetted membership statistics based on a large numerical simulation of the Solar Neighborhood. Given spatial and kinematic information on stars, LACEwING calculates membership probabilities in 13 NYMGs and three open clusters within 100 pc. In addition to describing the inputs, methods, and products of the code, we provide comparisons of LACEwING to other popular kinematic moving group membership identification codes. As a proof of concept, we use LACEwING to reconsider the membership of 930 stellar systems in the Solar Neighborhood (within 100 pc) that have reported measurable lithium equivalent widths. We quantify the evidence in support of a population of young stars not attached to any NYMGs, which is a possible sign of new as-yet-undiscovered groups or of a field population of young stars.
- ID:
- ivo://CDS.VizieR/J/A+A/392/971
- Title:
- Catalogue of bright YSO candidates in ISOGAL
- Short Name:
- J/A+A/392/971
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 7 and 15{mu}m observations of selected fields in the Galactic Plane obtained with ISOCAM during the ISOGAL program offer an unique possibility to search for previously unknown YSOs, undetected by IRAS because of lower sensitivity or confusion problems. In a previous paper (Felli et al., 2000, Cat. <J/A+A/362/199>) we established criteria of general validity to select YSOs from the much larger population of Post Main Sequence (Post-MS) stars present in the ISOGAL fields by comparing radio and IR observations of five fields located at l~45{deg}. The selection was based primarily on the position of the point sources in the [15]-([7]-[15]) diagram, which involves only ISOGAL data and allows to find possible YSOs using the survey data alone. In the present work we revise the adopted criteria by comparing radio-identified ultra-compact HII regions and ISOGAL observations over a much larger region. The main indications of the previous analysis are confirmed, but the criteria for selecting YSO candidates had to be revised to select only bright objects, in order to limit the contamination of the sample by Post-MS stars. The revised criteria ([15]<=4.5, [7]-[15]>=1.8) are then used to extract YSO candidates from the ISOGAL Point Source Catalogue in preparation. We select a total of 715 YSO candidates, corresponding to ~2 of the sources with good detections at 7 and 15{mu}m. The results are presented in a table form that provides an unique input list of small diameter, <=6", Galactic YSO candidates. The global properties of the sample of YSO candidates are briefly discussed.