- ID:
- ivo://CDS.VizieR/J/ApJS/111/203
- Title:
- Chemo-evolutionary Population Synthesis II.
- Short Name:
- J/ApJS/111/203
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of applying a new chemo-evolutionary stellar population model, developed in a previous paper, to new high-quality observational data of the nuclear regions of two representative elliptical galaxies and the bulge of the Sombrero galaxy. Here we fit in detail ~20 absorption lines and six optical and near-infrared colors, following two approaches: fitting a single-age, single-metallicity model and fitting our full chemical evolutionary model. We find that all the iron lines are weaker than the best-fitting models predict, indicating that the iron abundance is anomalous and deficient. We also find that the Ca I index at 4227 A is much lower than predicted by the models. We can obtain good fits for all the other lines and observed colors with models of old and metal-rich stellar populations and can show that the observed radial gradients are due to metallicity decreasing outward. We find that good fits are obtained both with fully evolutionary models and with single-age, single-metallicity models. This is due to the fact that in the evolutionary model more than 80% of the stars form within 1.5 Gyr after the formation of the galaxies. The fact that slightly better fits are obtained with evolutionary models indicates that these galaxies contain a small spread in metallicity.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/634/A10
- Title:
- Chemo-kinematic properties of Aquarius
- Short Name:
- J/A+A/634/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dwarf galaxies found in isolation in the Local Group (LG) are unlikely to have interacted with the large LG spirals, and therefore environmental effects such as tidal and ram-pressure stripping should not be the main drivers of their evolution. We aim to provide insight into the internal mechanisms shaping LG dwarf galaxies by increasing our knowledge of the internal properties of isolated systems. Here we focus on the evolved stellar component of the Aquarius dwarf galaxy, whose kinematic and metallicity properties have only recently started to be explored. Spectroscopic data in the region of the near-infrared Ca~II triplet lines has been obtained with FORS2 at the Very Large Telescope for 53 red giant branch (RGB) stars. These data are used to derive line-of-sight velocities and [Fe/H] of the individual RGB stars. We have derived a systemic velocity of -142.2^+1.8^_-1.8_km/s, in agreement with previous determinations from both the HI gas and stars. The internal kinematics of Aquarius appears to be best modelled by a combination of random motions (l.o.s. velocity dispersion of 10.3^+1.6^_-1.3_km/s) and linear rotation (with a gradient -5.0^+1.6^_-1.9_km/s/arcmin) along a P.A.=139_-27_^+17^deg, broadly consistent with the optical projected major axis. This rotation signal is significantly misaligned or even counter-rotating to that derived from the HI gas. We also find the tentative presence of a mild negative metallicity gradient and indications that the metal-rich stars have a colder velocity dispersion than the metal-poor ones. This work represents a significant improvement with respect to previous measurements of the RGB stars of Aquarius, as it doubles the number of member stars already studied in the literature. We speculate that the misaligned rotation between the HI gas and evolved stellar component might have been the result of recent accretion of HI gas, or re-accretion after gas-loss due to internal stellar feedback.
- ID:
- ivo://CDS.VizieR/J/MNRAS/481/3244
- Title:
- Chemo-kinematics from MARVELS
- Short Name:
- J/MNRAS/481/3244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Combining stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity, with barycentric radial velocity data provides insight into the chemo-dynamics of the Milky Way and our local Galactic environment. We analyse 3075 stars with spectroscopic data from the Sloan Digital Sky Survey III MARVELS radial velocity survey and present atmospheric parameters for 2343 dwarf stars using the spectral indices method, a modified version of the equivalent width method. We present barycentric radial velocities for a sample of 2610 stars with a median uncertainty of 0.3km/s. We determine stellar ages using two independent methods and calculate ages for 2335 stars with a maximum-likelihood isochronal age-dating method and for 2194 stars with a Bayesian age-dating method. Using previously published parallax data, we compute Galactic orbits and space velocities for 2504 stars to explore stellar populations based on kinematic and age parameters. This study combines good ages and exquisite velocities to explore local chemo-kinematics of the Milky Way, which complements many of the recent studies of giant stars with the APOGEE survey, and we find our results to be in agreement with current chemo-dynamical models of the Milky Way. Particularly, we find from our metallicity distributions and velocity-age relations of a kinematically defined thin disc that the metal-rich end has stars of all ages, even after we clean the sample of highly eccentric stars, suggesting that radial migration plays a key role in the metallicity scatter of the thin disc. All stellar parameters and kinematic data derived in this work are catalogued and published online in machine-readable form.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A173
- Title:
- CHEOPS 55 Cnc light curve
- Short Name:
- J/A+A/653/A173
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- 55 Cnc e is a transiting super-Earth (radius 1.88R_{Earth}_ and mass 8M_{Earth}_) orbiting a G8V host star on a 17-hour orbit. Spitzer observations of the planet's phase curve at 4.5um revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allows us to study the underlying flux variations of the 55 Cnc system. We detected a phase variation with a full-amplitude of 72+/-7ppm but do not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian, however the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet but may imply that circumplanetary or circumstellar material modulate the flux of the system. Further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time this year.
- ID:
- ivo://CDS.VizieR/J/other/RNAAS/5.13
- Title:
- CHEOPS limb and gravity-darkening coefficients
- Short Name:
- J/other/RNAAS/5.
- Date:
- 17 Jan 2022 00:43:02
- Publisher:
- CDS
- Description:
- The goal of this Research Note is to provide the theoretical calculations of the limb-darkening coefficients (LDC) and gravity-darkening coefficients (GDC) for the space mission CHEOPS. We use two stellar atmosphere models: ATLAS (plane-parallel) and PHOENIX with spherical symmetry covering a wide range of effective temperatures, local gravities, and hydrogen/metal. These grids cover 19 metallicities ranging from 10^-5^ up to 10^+1^ solar abundances, 0<=logg<=6.0 and 2300K<=Te<=50000K. The specific intensity distribution was fitted using six approaches: linear, quadratic, square root, logarithmic, power-2, and a series with four terms. The calculations of the gravity darkening coefficient were performed for both stellar atmosphere models adopting an improved formulation.
- ID:
- ivo://CDS.VizieR/J/A+A/659/A74
- Title:
- CHEOPS phase curve of WASP-189 b
- Short Name:
- J/A+A/659/A74
- Date:
- 10 Mar 2022 06:44:26
- Publisher:
- CDS
- Description:
- Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These "ultra-hot Jupiters" have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet atmospheric properties. We analyse the photometric observations of WASP-189 acquired with the instrument CHEOPS to derive constraints on the system architecture and the planetary atmosphere. We implement a light curve model suited for asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also model the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity and CHEOPS systematics. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189, R_p_=1.600_-0.016_^+0.017^R_J_, with a precision of 1%, and the true orbital obliquity of the planetary system {Psi}_p_=89.6+/-1.2deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth {delta}_ecl_=96.5_-5.0_^+4.5^ppm, from which we derive an upper limit on the geometric albedo: A_g_<0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Based on the derived system architecture, we predict the eclipse depth in the upcoming TESS observations to be up to ~165ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle between reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J_2_ (oblateness).
- ID:
- ivo://CDS.VizieR/J/A+A/657/A52
- Title:
- CHEOPS transit light curves of WASP-103 b
- Short Name:
- J/A+A/657/A52
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation. We estimate the radial Love number of WASP-103b to be h_f_=1.59+/-0.53 This is the first time that the tidal deformation is directly detected (at 3 sigma) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact. The estimated Love number of WASP-103b is similar to Jupiters. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope (JWST) can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
- ID:
- ivo://CDS.VizieR/J/A+A/643/A94
- Title:
- CHEOPS WASP-189 b transit light curve
- Short Name:
- J/A+A/643/A94
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CHEOPS (CHaracterising ExOPlanets Satellite), launched in December 2019, is a space mission dedicated to exoplanet follow-up with the capacity to perform photometric measurements at the20 ppm level. As CHEOPS observes in a broad optical passband, it can be used provide insights on the reflected light from exoplanets, and constrain the short-wavelength thermal emission for the hottest of planets through the observation of occultations and phase curves. We here report the first observation of an occultation by CHEOPS: that of the hot Jupiter WASP-189b, a M~2M_J_ planet orbiting an A-type star. We detect the occultation of WASP-189b at high significance in individual measurements, and derive an occultation depth of dF=87.9+/-4.3 ppm based on four occultations. We compare this measurement to model predictions and find that, when assuming inefficient heat redistribution, they are consistent with an unreflective atmosphere, heated to a temperature of 3435+/-27K. We furthermore present two transits of WASP-189b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star due to its high rotation rate. We use these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189b to 1.619+/-0.021R_J_. We further measure the projected orbital obliquity to be lambda=86.4(+2.9,-4.4)deg, a value in good agreement with a previous measurement from spectroscopic observations, and derive a true obliquity of Psi=85.4+/-4.3deg. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V=6.6 mag star, and using a 1-hour binning, we obtain a residual RMS between 10 and 17ppm on the individual light curves, and 5.7ppm when combining four visits.
- ID:
- ivo://CDS.VizieR/J/ApJ/806/268
- Title:
- Cheshire Cat galaxies: redshifts and magnitudes
- Short Name:
- J/ApJ/806/268
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5x10^14^ M_{sun}_ fossil group with an M_r_=-24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/156
- Title:
- CH(G) index of SDSS evolved stars
- Short Name:
- J/ApJ/765/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g-r)_0_ diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_-0.934. This method is confirmed by stars with [Fe/H]~-2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H]~-3.0 to [Fe/H]~0.0 by using field red giant stars with 0.4<=(g-r)_0_<=1.0. The metallicity-dependent calibrations give CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_+0.060[Fe/H]-0.830 for -3.0<[Fe/H]<=-1.2 and CH(G)=0.953(g-r)_0_-0.655(g-r)^2^_0_+0.060[Fe/H]-0.650 for -1.2<[Fe/H]<0.0. The calibrations are valid for the SDSS spectroscopic data set, and they cannot be applied blindly to other data sets. With the two calibrations, a significant number of the contaminating stars (AGB and RHB stars) were excluded and thus a clear sample of red giant stars is obtained by selecting stars within +/-0.05mag of the calibration. The sample is published online and it is expected that this large and clean sample of RGB stars will provide new information on the formation and evolution of the Galaxy.