- ID:
- ivo://CDS.VizieR/J/ApJ/799/60
- Title:
- X-ray galaxy clusters in the CFHTLS fields
- Short Name:
- J/ApJ/799/60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) presents a unique data set for weak-lensing studies, having high-quality imaging and deep multiband photometry. We have initiated an XMM-CFHTLS project to provide X-ray observations of the brightest X-ray-selected clusters within the wide CFHTLS area. Performance of these observations and the high quality of CFHTLS data allow us to revisit the identification of X-ray sources, introducing automated reproducible algorithms, based on the multicolor red sequence finder. We have also introduced a new optical mass proxy. We provide the calibration of the red sequence observed in the Canada-France-Hawaii filters and compare the results with the traditional single-color red sequence and photo-z. We test the identification algorithm on the subset of highly significant XMM clusters and identify 100% of the sample. We find that the integrated z-band luminosity of the red sequence galaxies correlates well with the X-ray luminosity, with a surprisingly small scatter of 0.20dex. We further use the multicolor red sequence to reduce spurious detections in the full XMM and ROSAT All-Sky Survey (RASS) data sets, resulting in catalogs of 196 and 32 clusters, respectively. We made spectroscopic follow-up observations of some of these systems with HECTOSPEC and in combination with BOSS DR9 data. We also describe the modifications needed to the source detection algorithm in order to maintain high purity of extended sources in the shallow X-ray data. We also present the scaling relation between X-ray luminosity and velocity dispersion.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/634/A4
- Title:
- 3 X-ray galaxy clusters radio images
- Short Name:
- J/A+A/634/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is well established that particle acceleration by shocks and turbulence in the intra-cluster medium can produce cluster-scale synchrotron emitting sources. However, the detailed physics of these particle acceleration processes is still not well understood. One of the main open questions is the role of fossil relativistic electrons that have been deposited in the intracluster medium (ICM) by radio galaxies. These synchrotron-emitting electrons are very difficult to study as their radiative lifetime is only tens of Myr at gigahertz frequencies, and they are therefore a relatively unexplored population. Despite the typical steep radio spectrum due to synchrotron losses, these fossil electrons are barely visible even at radio frequencies well below the gigahertz level. However, when a pocket of fossil radio plasma is compressed, it boosts the visibility at sub-gigahertz frequencies, creating what are known as radio phoenices. This compression can be the result of bulk motion and shocks in the ICM due to merger activity. In this paper we demonstrate the discovery potential of low-frequency radio sky surveys to find and study revived fossil plasma sources in galaxy clusters. We used the 150MHz TIFR GMRT Sky Survey (TGSS) and the 1.4GHz NVSS sky survey to identify candidate radio phoenices. A subset of three candidates was studied in detail using deep multi-band radio observations (LOFAR and GMRT), X-ray observations (Chandra or XMM-Newton), and archival optical observations. Two of the three sources are new discoveries. Using these observations, we identified common observational properties (radio morphology, ultra-steep spectrum, X-ray luminosity, dynamical state) that will enable us to identify this class of sources more easily, and will help us to understand the physical origin of these sources.
24213. X-ray galaxy clusters study
- ID:
- ivo://CDS.VizieR/J/A+A/535/A4
- Title:
- X-ray galaxy clusters study
- Short Name:
- J/A+A/535/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A precise understanding of the relations between observable X-ray properties of galaxy clusters and cluster mass is a vital part of the application of X-ray galaxy cluster surveys to test cosmological models. An understanding of how these relations evolve with redshift is just emerging from a number of observational data sets. The current literature provides a diverse and inhomogeneous picture of scaling relation evolution. We attempt to transform these results and the data on recently discovered distant clusters into an updated and consistent framework, and provide an overall view of scaling relation evolution from the combined data sets. We study in particular the most important scaling relations connecting X-ray luminosity, temperature, and cluster mass (M-T, L_X_-T, and M-L_X_) combining 14 published data sets supplemented with recently published data of distant clusters and new results from follow-up observations of the XMM-Newton Distant Cluster Project (XDCP) that adds new leverage to efficiently constrain the scaling relations at high redshift.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/117
- Title:
- X-ray group of galaxies in AEGIS
- Short Name:
- J/ApJ/765/117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z~0.066-1.544 and virial mass range M_200_~1.3-13.3x10^13^^M_{sun}_. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A130
- Title:
- X-ray halo of 33 clusters of galaxies images
- Short Name:
- J/A+A/585/A130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analyzed deep observations for a sample of 33 clusters with more than 100ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of different gas quantities to high-resolution 3D hydrodynamic simulations, we constrain the average Mach number regime of the sample to Mach1D ~0.16+/-0.07. In addition we found a tight correlation between metallicity, temperature and redshift with an average metallicity of Z~0.3+/-0.1 Z(solar). This study provides detailed perturbation measurements for a large sample of clusters which can be used to study turbulence and make predictions for future X-ray observatories like eROSITA, Astro-H, and Athena.
24216. X-ray imaging of RCW 49
- ID:
- ivo://CDS.VizieR/J/ApJ/665/719
- Title:
- X-ray imaging of RCW 49
- Short Name:
- J/ApJ/665/719
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a high-resolution X-ray imaging study of the stellar population in the Galactic massive star-forming region RCW 49 and its central OB association Westerlund 2. We obtained a ~40ks X-ray image of a ~17'x17' field using the Chandra X-Ray Observatory and deep NIR images using the Infrared Survey Facility in a concentric ~8.3'x8.3' region. We detected 468 X-ray sources and identified optical, NIR, and Spitzer MIR counterparts for 379 of them.
- ID:
- ivo://CDS.VizieR/J/ApJ/844/7
- Title:
- X-ray line ratios for diverse ion collisions
- Short Name:
- J/ApJ/844/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environments- particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau-Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H2O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H2O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos.
- ID:
- ivo://CDS.VizieR/J/A+A/399/919
- Title:
- X-ray Luminosities in Blanco 1
- Short Name:
- J/A+A/399/919
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present X-ray Luminosity Distributions (XLDs) of late-type members (dF, dG, dK, dM) of the Blanco 1 cluster, based on ROSAT-HRI data and new astrometric-photometric membership obtained from the GSC-II project. For the first time we present the XLD of dM stars of this cluster. The high metallicity of Blanco 1 allows us to investigate the role of chemical composition on the coronal emission of late-type stars. Comparison between X-ray Luminosity Distributions of Blanco 1 and Pleiades, NGC 2516 and {alpha} Per suggests a possible metallicity effect in dM stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/328/461
- Title:
- X-ray luminosities of early-type galaxies
- Short Name:
- J/MNRAS/328/461
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of X-ray luminosities for 401 early-type galaxies, of which 136 are based on newly analysed ROSAT PSPC pointed observations (Cat. <IX/30>). The remaining luminosities are taken from the literature and converted to a common energy band, spectral model and distance scale. Using this sample we fit the L_X_/L_B_ relation for early-type galaxies and find a best-fit slope for the catalogue of ~2.2. We demonstrate the influence of group-dominant galaxies on the fit and present evidence that the relation is not well modelled by a single power-law fit. We also derive estimates of the contribution to galaxy X-ray luminosities from discrete-sources and conclude that they provide L_(discrete-source-contribution)_/L_B_~29.5erg/s/L_B{sun}_. We compare this result with luminosities from our catalogue. Lastly, we examine the influence of environment on galaxy X-ray luminosity and on the form of the L_X_/L_B_ relation. We conclude that although environment undoubtedly affects the X-ray properties of individual galaxies, particularly those in the centres of groups and clusters, it does not change the nature of whole populations.
- ID:
- ivo://CDS.VizieR/J/MNRAS/439/611
- Title:
- X-ray luminosities of SDSS DR7 clusters from RASS
- Short Name:
- J/MNRAS/439/611
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ~65000 candidate clusters with masses >~10^13^h-1^M_{sun}_ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z<=0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65% of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35%, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses >~10^14^h^-1^M_{sun}_ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses <~10^14^h^-1^M_{sun}_ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses >~10^14^h^-1^M_{sun}_ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.