- ID:
- ivo://CDS.VizieR/J/A+A/580/A31
- Title:
- Aldebaran radial velocity variations
- Short Name:
- J/A+A/580/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the nature of the long-period radial velocity variations in {alpha} Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for {alpha} Tau spanning over 30 years. An examination of the H{alpha} and CaII {lambda}8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/806/110
- Title:
- ALESS survey: SMGs in the ECDF-S data
- Short Name:
- J/ApJ/806/110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ALESS survey has followed up on a sample of 122 sub-millimeter sources in the Extended Chandra Deep Field South at 870{mu}m with the Atacama Large Millimeter Array (ALMA), allowing us to pinpoint the positions of sub-millimeter galaxies (SMGs) to ~0.3" and to find their precise counterparts at different wavelengths. This enabled the first compilation of the multi-wavelength spectral energy distributions (SEDs) of a statistically reliable survey of SMGs. In this paper, we present a new calibration of the magphys SED modeling code that is optimized to fit these ultraviolet-to-radio SEDs of z>1 star-forming galaxies using an energy balance technique to connect the emission from stellar populations, dust attenuation, and dust emission in a physically consistent way. We derive statistically and physically robust estimates of the photometric redshifts and physical parameters (such as stellar masses, dust attenuation, star formation rates (SFRs), and dust masses) for the ALESS SMGs.
- ID:
- ivo://CDS.VizieR/J/AJ/145/149
- Title:
- ALFALFA discovery of Leo P. II. BVR photometry
- Short Name:
- J/AJ/145/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21cm HI survey. Broadband (BVR) data obtained with the WIYN 3.5m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V_o_~25. We also use narrowband H{alpha} imaging from the KPNO 2.1m telescope to identify a HII region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.
- ID:
- ivo://CDS.VizieR/J/AJ/146/145
- Title:
- ALFALFA discovery of Leo P. IV. VI photometry
- Short Name:
- J/AJ/146/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Leo P is a low-luminosity dwarf galaxy discovered through the blind HI Arecibo Legacy Fast ALFA survey. The HI and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19^+0.17^_-0.50_mag corresponding to a distance of 1.72^+0.14^_0.40_Mpc. Although our photometry reaches 3mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ~0.5Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.
- ID:
- ivo://CDS.VizieR/J/ApJ/861/49
- Title:
- ALFALFA extragalactic HI source catalog
- Short Name:
- J/ApJ/861/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the catalog of ~31500 extragalactic HI line sources detected by the completed Arecibo Legacy Fast ALFA (ALFALFA) survey out to z<0.06, including both high signal-to-noise ratio (>6.5) detections and ones of lower quality that coincide in both position and recessional velocity with galaxies of known redshift. We review the observing technique, data reduction pipeline, and catalog construction process, focusing on details of particular relevance to understanding the catalog's compiled parameters. We further describe and make available the digital HI line spectra associated with the cataloged sources. In addition to the extragalactic HI line detections, we report nine confirmed OH megamasers (OHMs) and 10 OHM candidates at 0.16<z<0.22 whose OH line signals are redshifted into the ALFALFA frequency band. Because of complexities in data collection and processing associated with the use of a feed-horn array on a complex single-dish antenna in the terrestrial radio frequency interference environment, we also present a list of suggestions and caveats for consideration by users of the ALFALFA extragalactic catalog for future scientific investigations.
- ID:
- ivo://CDS.VizieR/J/AJ/142/170
- Title:
- ALFALFA survey: the {alpha}.40 HI source catalog
- Short Name:
- J/AJ/142/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a current catalog of 21cm HI line sources extracted from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey over ~2800deg^2^ of sky: the {alpha}.40 catalog. Covering 40% of the final survey area, the {alpha}.40 catalog contains 15855 sources in the regions 07h30m<RA<16h30m, +04{deg}<DEC<+16{deg}, and +24{deg}<DEC<+28{deg} and 22h<RA<03h, +14{deg}<DEC<+16{deg}, and +24{deg}<DEC<+32{deg}. Of those, 15041 are certainly extragalactic, yielding a source density of 5.3 galaxies per deg^2^, a factor of 29 improvement over the catalog extracted from the HI Parkes All-Sky Survey. In addition to the source centroid positions, HI line flux densities, recessional velocities, and line widths, the catalog includes the coordinates of the most probable optical counterpart of each HI line detection, and a separate compilation provides a cross-match to identifications given in the photometric and spectroscopic catalogs associated with the Sloan Digital Sky Survey Data Release 7. Fewer than 2% of the extragalactic HI line sources cannot be identified with a feasible optical counterpart; some of those may be rare OH megamasers at 0.16<z<0.25. A detailed analysis is presented of the completeness, width-dependent sensitivity function and bias inherent of the {alpha}.40 catalog. The impact of survey selection, distance errors, current volume coverage, and local large-scale structure on the derivation of the HI mass function is assessed.
- ID:
- ivo://CDS.VizieR/J/AJ/139/2130
- Title:
- ALFA-ZOA precursor observation
- Short Name:
- J/AJ/139/2130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Arecibo L-band Feed Array (ALFA) is being used to conduct a low-Galactic latitude survey, to map the distribution of galaxies and large-scale structures behind the Milky Way through detection of galaxies' neutral hydrogen (HI) 21cm emission. This Zone of Avoidance (ZOA) survey finds new HI galaxies which lie hidden behind the Milky Way, and also provides redshifts for partially obscured galaxies known at other wavelengths. Before the commencement of the full survey, two low-latitude precursor regions were observed, totaling 138deg^2^, with 72 HI galaxies detected. Detections through the inner Galaxy generally have no cataloged counterparts in any other waveband, due to the heavy extinction and stellar confusion. Detections through the outer Galaxy are more likely to have Two Micron All Sky Survey counterparts. We present the results of these precursor observations, including a catalog of the detected galaxies, with their HI parameters.
- ID:
- ivo://CDS.VizieR/J/AJ/158/234
- Title:
- ALFAZOA Shallow Survey galaxy properties
- Short Name:
- J/AJ/158/234
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Arecibo L-band Feed Array Zone of Avoidance (ALFAZOA) Shallow Survey is a blind H I survey of the extragalactic sky behind the northern Milky Way conducted with the ALFA receiver on the 305 m Arecibo Radio Telescope. ALFAZOA Shallow covered 900 square degrees at full sensitivity from 30{deg}=<l=<75{deg} and |b|=<10{deg} and an additional 460 square degrees at limited sensitivity at latitudes up to 20{deg}. It has an rms sensitivity of 5-7 mJy and a velocity resolution of 9-20.6 km/s, and detected 403 galaxies out to a recessional velocity of 12000 km/s, with an angular resolution of 3.4' and a positional accuracy between 0.2' and 1.7'. The survey is complete above an integrated line flux of F_HI_=2.0 Jy km/s for half the survey, and above F_HI_= 2.8 Jy km/s for the other half. Of the ALFAZOA H I detections, 43% have at least one possible optical/near-infrared counterpart in the literature, and an additional 16% have counterparts that only included previous H I measurements. There are fewer counterparts in regions of high extinction and for galaxies with lower H I mass. Comparing the results of the survey to the predictions of Erdogdu et al. (2006MNRAS.373...45E), and using their nomenclature, ALFAZOA confirms the position and extent in the ZOA of the C7, C{zeta}, Pegasus, Corona Borealis, and Delphinus structures, but not of the Cygnus void. Two new structures are identified, both connected to the C7 overdensity; one extends to 35{deg}, and the other crosses the ZOA.
- ID:
- ivo://CDS.VizieR/I/223
- Title:
- Algiers AC Zone Data Reduced to ACRS
- Short Name:
- I/223
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The U.S. Naval Observatory is in the process of making new reductions of the Astrographic Catalogue (AC) using a modern reference system, the ACRS, which represents the system of the FK5. The data from the Algiers Zone, whose plates are centered between declinations -2 and +4 degrees (eq. 1900), have been analyzed for scale, rotation, tilt, coma, magnitude equation, radial distortion and distortions introduced by the use of reseaux in the Carte du Ciel program. The result is a positional catalog of over 199,000 stars on eq. J2000.0, epoch of observation. The plate were exposed between 1891 and 1912. For cross-identification purposes, all stars have been matched with the Tycho Input Catalog (revised); those numbers have been added to each record.
- ID:
- ivo://CDS.VizieR/J/AJ/152/49
- Title:
- Algol-type binaries. IX. V548 Cyg
- Short Name:
- J/AJ/152/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new UV light curve of the Algol eclipsing binary V548 Cyg obtained with the Lunar Ultraviolet Telescope. We model the UV light curve together with two previously published (B and V) light curves, primary star radial velocities, and eclipse timings in a unified multi-data-type solution and determine orbital parameters and absolute dimensions. Timing residuals hint at the presence of a third star in the system. This star is possibly the source of the third light that is needed to obtain a good fit to each of the light curves simultaneously. The light-time oscillation in the timing residuals has a period of either ~19 or ~46years. The third body orbit inclination would have to be low (23{deg} or 15{deg}, respectively) for the third star to have a mass of ~1.5M_{Sun}_, which would be expected for a main-sequence star of color B-V~0.32, as determined from the light curve solution. In an H-R diagram, the mass-gaining, primary component of V548 Cyg is located between the zero-age and terminal-age main sequence for solar composition stars, and close to the 0.4Gyr isochrone.