- ID:
- ivo://nasa.heasarc/ngc404cxo
- Title:
- NGC 404 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC404CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a comprehensive X-ray point-source catalog of NGC 404, the closest face-on (inclination angle of 11 degrees) S0 galaxy to the Milky Way, which was obtained as part of the Chandra Local Volume Survey (CLVS) and originally published in Binder et al. (2013). A new 97-ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. This survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6 x 10<sup>35</sup> erg/s in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. The authors searched overlapping Hubble Space Telescope (HST) observations for optical counterparts to their X-ray detections, but found only two X-ray sources with candidate optical counterparts. They found 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei (AGN). The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented in the 2013 reference paper. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10<sup>35</sup> erg/s and 10<sup>36</sup> erg/s, respectively, significantly lower than previous X-ray studies of NGC 404. The authors find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10<sup>37</sup> erg/s) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation ~0.5 Gyr ago. NGC 404 was observed during Chandra X-Ray Observatory Cycle 12 on 2010 October 21-22 for 97 ks using the ACIS-S array (Obs. ID 12339). The authors additionally utilized archival observations: NGC 404 was observed on 1999 December 19 (Obs. ID 870) for ~24 ks and on 2000 August 30 (Obs. ID 384) for ~2 ks, both using the ACIS-S array. The authors created images in the following energy bands (keV): 0.35-8.0, 0.35-1.0, 1.0-2.0, 2.0-8.0 with bin sizes of 1, 2, 3, and 4. The iterative source detection strategy that was used is described in Section 2.3 of Binder et al. (2012, ApJ, 758, 15). ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 or 0.35 - 8.0 keV. To be included in the final NGC 404 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands. The final CLVS source catalog for NGC 404 contains 74 sources. Given the survey size of these NGC 404 observations, there are expected to be ~1.6 false sources included in this NGC 404 final source catalog. Three HST fields were used to search for optical counterparts for each of the X-ray sources. One field (labeled "DEEP") was taken as part of the Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury (ANGST, GO-10915; Dalcanton et al. 2009, ApJS, 183, 67), while the other two shallower fields (labeled "NE" and "SW") were obtained as part of GO-11986. Details of the HST data acquisition and data reduction are provided in Williams et al. (2010, ApJ, 716, 71). This table was created by the HEASARC in September 2015 primarily based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/763/128">CDS Catalog J/ApJ/763/128</a> files table3.dat, table4.dat, table5.dat, table6.dat, table10.dat, table12.dat and table13.dat (Binder et al. 2013) which contain the properties of the 74 Chandra point sources found in this study.and of their multi-wavelength counterparts. As noted above, the HEASARC has added an extra parameter b4_flux which was taken from the machine-readable version of Table 5 of Binder et al. (2015). This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/ngc2403cx2
- Title:
- NGC 2403 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2403CX2
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a comprehensive X-ray point source catalog of the galaxy NGC 2403, an outlying member of the M 81 group of galaxies, as part of the Chandra Local Volume Survey. The combined archival observations of this galaxy have an effective exposure time of 190 ks. When combined with the catalogs of sources in NGC 55 and NGC 4214 given in this same reference paper, and the authors' previously published catalogs for NGC 300 (Binder et al. 2012, ApJ, 758, 15) and NGC 404 (Binder et al. 2013, ApJ, 763, 128), the CLVS contains 629 high-significance X-ray sources total down to a limiting unabsorbed luminosity of ~ 5 x 10<sup>35</sup> erg s<sup>-1</sup> in the 0.35-8.0 keV band in each of the five galaxies. In the reference paper, the authors present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, they carried out cross-correlations with multi-wavelength data sets. They searched overlapping Hubble Space Telescope observations for optical counterparts to their X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background active galactic nucleus, supernova remnant, or foreground star. The authors utilized archival X-ray observations: NGC 2403 was observed by the Chandra X-Ray Observatory using the ACIS-S array on five occasions for a total of 190 ks: <pre> Obs. ID Date Eff. Exposure time (ks) 2014 2001 Apr 17 35 4627 2004 Aug 09 31 4628 2004 Aug 23 42 4629 2004 Oct 03 40 4630 2004 Dec 22 42 </pre> The iterative source detection strategy that was used is described in Section 2.3 of Binder et al. (2012, ApJ, 758, 15). ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 or 0.35 - 8.0 keV. To be included in the final NGC 2403 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands. The final CLVS source catalog for NGC 2403 contains 190 sources. This table was created by the HEASARC in September 2015 based on machine-readable versions of those parts of Table 5 and 8 from the reference paper which pertained to the 190 high-significance (pns < 4 x 10<sup>-6</sup>) X-ray sources which were detected in NGC 2403. It does not include the 108 lower-significance sources in NGC 2403 which had 4 x 10<sup>-6</sup> < pns < 1.0 x 10<sup>-3</sup>, some of which are likely to be genuine X-ray sources. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc1291cxo
- Title:
- NGC 1291 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC1291CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from a study of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. Utilizing the four available Chandra observations totaling an effective exposure of 179 ks, the authors detect 169 X-ray point sources in the galaxy in the full band (0.3 - 8.0 keV) with a false-positive probability threshold of 10<sup>-6</sup> (implying approximately 2 false detections given the size of the image). Of these sources, 75 are in the bulge and 71 are in the ring. The authors report photometric properties of these sources in a point-source catalog. There are ~ 40% of the bulge sources and ~ 25% of the ring sources showing > 3-sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (~ 75%) and ring (~ 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity active galactic nucleus (AGN) with moderate obscuration; spectral variability is observed between individual observations. The authors construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. They reach 90% completeness limits of ~ 1.5 x 10<sup>37</sup> and ~ 2.2 x 10<sup>37</sup> erg s<sup>-1</sup> for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. In the paper, the authors perform detailed population synthesis modeling of the XRB populations in NGC 1291, which suggests that the observed combined XLF is dominated by an old LMXB population. They compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative overdensity of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF. This table was created by the HEASARC in May 2012 based on an electronic version of Table 2 from the reference paper obtained from the ApJ website. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc4649cx2
- Title:
- NGC 4649 Chandra X-Ray Point Source Catalog 2
- Short Name:
- NGC4649CX2
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the main X-ray source catalog for the Chandra monitoring observations of the 16.5-Mpc distant elliptical galaxy, NGC 4649. The galaxy has been observed with Chandra ACIS-S3 in six separate pointings, reaching a total exposure of 299 ks. There are 501 X-ray sources detected in the 0.3-8.0 keV band in the merged observation or in one of the six individual observations; 399 sources are located within the D<sub>25</sub> ellipse. The observed 0.3-8.0 keV luminosities of these 501 sources range from 9.3 x 10<sup>36</sup> erg s<sup>-1</sup> to 5.4 x 10<sup>39</sup> erg s<sup>-1</sup>. The 90% detection completeness limit within the D<sub>25</sub> ellipse is 5.5 x 10<sup>37</sup> erg s<sup>-1</sup>. Based on the surface density of background active galactic nuclei (AGNs) and the detection completeness, we expect ~ 45 background AGNs among the catalog sources (~ 15 within the D<sub>25</sub> ellipse). There are nine sources with luminosities greater than 10<sup>39</sup> erg s<sup>-1</sup>, which are candidates for ultraluminous X-ray sources. The nuclear source of NGC 4649 is a low-luminosity AGN, with an intrinsic 2.0-8.0 keV X-ray luminosity of 1.5 x 10<sup>38</sup> erg s<sup>-1</sup>. The X-ray colors suggest that the majority of the catalog sources are low-mass X-ray binaries (LMXBs). The authors find that 164 of the 501 X-ray sources show long-term variability, indicating that they are accreting compact objects, and discover four transient candidates and another four potential transients. They also identify 173 X-ray sources (141 within the D<sub>25</sub> ellipse) that are associated with globular clusters (GCs) based on Hubble Space Telescope and ground-based data; these LMXBs tend to be hosted by red GCs. Although NGC 4649 has a much larger population of X-ray sources than the structurally similar early-type galaxies, NGC 3379 and NGC 4278, the X-ray source properties are comparable in all three systems. This HEASARC table contains the main Chandra source catalog of the basic properties of the 501 X-ray detected sources (Table 3 in the reference paper which includes both sources detected in the merged X-ray image as well as a number only detected in the individual observations), and also the information on source counts, hardness ratios and soft and hard X-ray colors in the merged observation for the same 501 X-ray detected sources (Table 4 in the reference paper). It does not contain the information on source counts, hardness ratios and soft and hard X-ray colors for these same sources in the six individual observations that were contained in Tables 5 - 10 of the reference paper. This table was created by the HEASARC in March 2013 based on the electronic version of Tables 3 and 4 from the reference paper which were obtained from the ApJS website.. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc4278cxo
- Title:
- NGC 4278 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC4278CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table lists some of the properties of the discrete X-ray sources detected in the authors' monitoring program of the globular cluster (GC)-rich elliptical galaxy, NGC 4278, observed with Chandra ACIS-S in six separate pointings, resulting in a co-added exposure of 458 ks. From this deep observation, 236 sources have been detected within the region overlapped by all observations, 180 of which lie within the D<sub>25</sub> ellipse angular diameter of the galaxy. These 236 sources range in X-ray luminosity L<sub>X</sub> from 3.5 x 10<sup>36</sup> erg s<sup>-1</sup> (with 3-sigma upper limit <= 1 x 10<sup>37</sup> erg s<sup>-1</sup>) to ~2 x 10<sup>40</sup> erg s<sup>-1</sup>, including the central nuclear source which has been classified as a LINER. From optical data, 39 X-ray sources have been determined to be coincident with a GC, these sources tend to have high X-ray luminosity, with 10 of these sources exhibiting L<sub>X</sub> > 1 x 10<sup>38</sup> erg s<sup>-1</sup>. From X-ray source photometry, it has been determined that the majority of the 236 point sources that have well-constrained colors have values that are consistent with typical low-mass X-ray binary spectra, with 29 of the sources expected to be background objects from the log N-log S relation. There are 103 sources in this population that exhibit long-term variability, indicating that they are accreting compact objects. Three of these sources have been identified as transient candidates, with a further three possible transients. Spectral variations have also been identified in the majority of the source population, where a diverse range of variability has been identified, indicating that there are many different source classes located within this galaxy. This HEASARC table contains the master source list (Table 3 of the reference paper) and the X-ray properties of the sources in the co-added observations (Table 4 of the reference paper), but not the X-ray properties of the sources in the 6 individual observations (Tables 5-10 of the reference paper). The details of the six individual pointings used in this study, e.g., the Chandra ObsIDs, dates, exposure times and cleaned exposure times, are given in Table 1 of the reference paper, and repeated here: <pre> Obs. No.OBSID Date Exposure (s) Cleaned Exposure (s) 1 4741 2005 Feb 3 37462.0 37264.5 2 7077 2006 Mar 16 110303.8 107736.7 3 7078 2006 Jul 25 51433.2 48076.2 4 7079 2006 Oct 24 105071.7 102504.6 5 7081 2007 Feb 20 110724.0 107564.5 6 7080 2007 Apr 20 55824.8 54837.5 Total Co-added 470819.5 457984.0 </pre> Notes. The pointing OBSID 7181 was taken before OBSID 7080, so to maintain the time sequence of the exposures these observation numbers have been labeled as above in the reference paper. The details of the energy bands and X-ray colors used in this study are given in Table 2 of the reference paper, and repeated here: <pre> Band/Color Energy Range/Definition Broad (B) 0.3-8 keV Soft (S) 0.3-2.5 keV Hard (H) 2.5-8 keV Soft 1 (S1) 0.3-0.9 keV Soft 2 (S2) 0.9-2.5 keV Conventional broad (Bc) 0.5-8 keV Conventional soft (Sc) 0.5-2 keV Conventional hard (Hc) 2-8 keV Hardness ratio HR (Hc-Sc)/(Hc+Sc) X-ray color C21 -log(S2) + log(S1) = log(S1/S2) X-ray color C32 -log(H) + log(S2) = log(S2/H) </pre> This table was created by the HEASARC in April 2009 based on machine-readable versions of Tables 3 and 4 from the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc55cxo
- Title:
- NGC 55 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC55CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a comprehensive X-ray point source catalog of the SB(s)m galaxy NGC 55, a member of the nearby Sculptor group of galaxies, as part of the Chandra Local Volume Survey. The combined archival observations of this galaxy have an effective exposure time of 56.5 ks. When combined with the catalogs of sources in NGC 2403 and NGC 4214 given in this same reference paper, and the authors' previously published catalogs for NGC 300 (Binder et al. 2012, ApJ, 758, 15) and NGC 404 (Binder et al. 2013, ApJ, 763, 128), the CLVS contains 629 high-significance X-ray sources total down to a limiting unabsorbed luminosity of ~ 5 x 10<sup>35</sup> erg s<sup>-1</sup> in the 0.35-8.0 keV band in each of the five galaxies. In the reference paper, the authors present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, they carried out cross-correlations with multi-wavelength data sets. They searched overlapping Hubble Space Telescope observations for optical counterparts to their X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background active galactic nucleus, supernova remnant, or foreground star. The authors utilized archival X-ray observations: NGC 55 was observed by the Chandra X-Ray Observatory on 2001 September 11 for 47 ks using the ACIS-I array (Obs. ID 2255), and on 2004 June 29 for 9.5 ks using the ACIS-I array (Obs. ID 4744). The iterative source detection strategy that was used is described in Section 2.3 of Binder et al. (2012, ApJ, 758, 15). ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 or 0.35 - 8.0 keV. To be included in the final NGC 55 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands. The final CLVS source catalog for NGC 55 contains 154 sources. This table was created by the HEASARC in September 2015 based on machine-readable versions of those parts of Table 5 and 8 from the reference paper which pertained to the 154 high-significance (pns < 4 x 10<sup>-6</sup>) X-ray sources which were detected in NGC 55. It does not include the 76 lower-significance sources in NGC 55 which had 4 x 10<sup>-6</sup> < pns < 1.0 x 10<sup>-3</sup>, some of which are likely to be genuine X-ray sources. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2264cx2
- Title:
- NGC 2264 Chandra X-Ray Point Source Catalog 2
- Short Name:
- NGC2264CX2
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- With the goal of improving the member census of the NGC 2264 star-forming region and studying the origin of X-ray activity in young pre-main sequence (PMS) stars, the authors analyzed a deep, 100 ks long, Chandra ACIS observation covering a 17' x 17' field in the 3 Myr old star-forming region (SFR) NGC 2264. The preferential detection in X-rays of low-mass PMS stars gives strong indications of their membership. The authors study X-ray activity as a function of stellar and circumstellar characteristics by correlating the X-ray luminosities, temperatures, and absorptions with optical and near-infrared (NIR) data from the literature. The authors detected 420 X-ray point sources in the observation above a 4.6-sigma significance threshold using the PWDetect software. Optical and NIR counterparts were found in the literature for 85% of the sources. The authors argue that more than 90% of these counterparts are NGC 2264 members, thereby significantly increasing the known low-mass cluster population by about 100 objects. Among the sources without counterpart, about 50% are probably associated with members, several of which are expected to be previously unknown protostellar objects. With regard to activity, several previous findings are confirmed: X-ray luminosity is related to stellar mass, although with a large scatter; L<sub>x</sub>/L<sub>bol</sub> is close to, but almost invariably below, the saturation level of 10<sup>-3</sup>, especially when considering the quiescent X-ray emission. A comparison between classical T Tauri stars (CTTS) and weak-line T Tauri stars (WTTS) shows several differences: CTTS have, at any given mass, activity levels that are both lower and more scattered than WTTS; emission from CTTS may also be more time variable and is on average slightly harder than for WTTS. However, there is evidence in some CTTS of extremely cool, ~0.1 - 0.2 keV, plasma which the authors speculate is due to plasma heated by accretion shocks. The X-ray spectra of the 199 sources with more than 50 detected photons were analyzed by the authors. Spectral fits were performed with XSPEC 11.3 and with several shell and TCL scripts to automate the process. For each source, they fit the data in the [0.5 - 7.0] keV energy interval with several model spectra: one and two isothermal components (APEC), subject to photoelectric absorption from interstellar and circumstellar material (WABS). Plasma abundances for one-temperature (1T) models were fixed at 0.3 times the solar abundances, while they were both fixed at that value and treated as a free parameter for the two-temperature (2T) models. The absorbing column densities, N<sub>H</sub>, were both left as a free parameter and fixed at values corresponding to the optically/NIR determined extinctions, when available: N<sub>H</sub> = 1.6 x 10<sup>21</sup> A<sub>V</sub>. This table contains the X-ray, optical and NIR data for the 420 detected X-ray sources; it does not contain the master catalog of 1598 optical/NIR sources within the ACIS FOV which was presented in Table 3 of the reference paper, available at <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903/table3.dat">https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903/table3.dat</a> This table was created by the HEASARC in March 2007 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903">CDS Catalog J/A+A/455/903</a> files table1.dat, table4.dat and table6.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6357cxo
- Title:
- NGC 6357 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6357CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This contains some of the results from the first high spatial resolution X-ray study of the massive star-forming region NGC 6357, which were obtained in a 38 ks Chandra/ACIS observation. Inside the brightest constituent of this large H II region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. The authors have investigated the cluster extent and initial mass function and detected ~800 X-ray sources with a limiting sensitivity of ~ 10<sup>30</sup> erg s<sup>-1</sup>: this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical studies by a factor of ~ 50. The high-luminosity end (log L[2-8 keV] >= 30.3 erg s<sup>-1</sup>) of the observed X-ray luminosity function in NGC 6357 is clearly consistent with a power-law relation as seen in the Orion Nebula Cluster and Cepheus B, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. The long-standing L<sub>X</sub> ~ 10<sup>-7</sup> L<sub>bol</sub> correlation for O stars is confirmed. Twenty-four candidate O stars and one possible new obscured massive YSO or Wolf-Rayet star are presented. Many cluster members are estimated to be intermediate-mass stars from available infrared photometry (assuming an age of ~ 1 Myr), but only a few exhibit K-band excess. The authors report the first detection of X-ray emission from an evaporating gaseous globule at the tip of a molecular pillar; this source is likely a B0-B2 protostar. NGC 6357 was observed on 2004 July 9 with the Imaging Array of the Advanced CCD Imaging Spectrometer (ACIS-I) on board Chandra. Four front-illuminated (FI) CCDs form the ACIS-I, which covers a field of view (FOV) of ~ 17 by 17 arcminutes. The observation was made in the standard Timed Exposure, Very Faint mode, with 3.2 s integration time and 5 pixel by 5 pixel event islands. The total exposure time was 38 ks and the satellite roll angle was 289 degrees. The aim point was centered on the O3 If star Pis 24-1, the heart of the OB association Pismis 24. The Chandra observation ID is 4477. Data reduction started with filtering the Level 1 event list processed by the Chandra X-ray Center pipeline to recover an improved Level 2 event list. To improve absolute astrometry, X-ray positions of ACIS-I sources were obtained by running the wavdetect wavelet-based source detection algorithm within the Chandra Interactive Analysis of Observations (CIAO) package on the original Level 2 event list, using only the central 8 by 8 arcminutes of the field. The resulting X-ray sources were matched to the 2MASS point source catalog. The authors calculated the position offsets between 277 X-ray sources and their NIR counterparts and applied an offset of +0.02" in right ascension (R.A.) and -0.33" in declination to the X-ray coordinates. From an initial list of 910 potential X-ray sources, the authors rejected sources with a P<sub>B</sub> > 1% likelihood of being a background fluctuation. The trimmed source list includes 779 sources, with full-band (0.5 - 8.0 keV) net (background-subtracted) counts ranging from 1.7 to 1837 counts. The 779 valid sources were purposely divided by the authors into two lists: the 665 sources with P<sub>B</sub> < 0.1% make up the primary source list of highly reliable sources (Table 1 in the reference paper; sources with source_type = 'M' in this table), and the remaining 114 sources with P<sub>B</sub> >= 0.1% likelihood of being spurious background fluctuations were listed as tentative sources in Table 2 of the reference paper (source_type = 'T' in this table). The authors believe that most of these tentative sources are likely real detections. This table was created by the HEASARC in October 2007 based on the merger of the electronic versions of Tables 1 (Main Source Catalog) and 2 (Tentative Sources which were obtained from the ApJ website. To help distinguish from which original table entries in this Browse table come from, the HEASARC has created a parameter called source_type which is set to 'M' for sources from Table 1 and to 'T' for sources from Table 2. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc3115cxo
- Title:
- NGC 3115 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC3115CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from an in-depth study of low-mass X-ray binaries (LMXBs) detected in the nearby lenticular galaxy NGC 3115 using the Megasecond Chandra X-ray Visionary Project observation (total exposure time 1.1 Ms). In total the authors found 136 candidate LMXBs in the field and 49 in globular clusters (GCs) above 2-sigma detection, with 0.3-8 keV luminosity L<sub>X</sub> ~ 10<sup>36</sup> - 10<sup>39</sup> erg s<sup>-1</sup>. Other than 13 transient candidates, the sources overall have less long-term variability at higher luminosity, at least at L<sub>X</sub> >~ 2 x 10<sup>37</sup> erg s<sup>-1</sup>. In order to identify the nature and spectral state of these sources, the authors compared their collective spectral properties based on single-component models (a simple power law or a multicolor disk) with the spectral evolution seen in representative Galactic LMXBs. The authors found that in the L<sub>X</sub> vs. photon index Gamma<sub>PL</sub> and L<sub>X</sub> versus disk temperature kT<sub>MCD</sub> plots, most of their sources fall on a narrow track in which the spectral shape hardens with increasing luminosity below L<sub>X</sub> ~ 7 x 10<sup>37</sup> erg s<sup>-1</sup>, but is relatively constant (Gamma<sub>PL</sub> ~ 1.5 or kT<sub>MCD</sub> ~ 1.5 keV) above this luminosity, which is similar to the spectral evolution of Galactic neutron star (NS) LMXBs in the soft state in the Chandra bandpass. Therefore, the authors identified the track as the NS LMXB soft-state track and suggested sources with L<sub>X</sub> <~ 10<sup>37</sup> erg s<sup>-1</sup> as atolls in the soft state and those with L<sub>X</sub> >~ 10<sup>37</sup> erg s<sup>-1</sup> as Z sources. Ten other sources (five are transients) displayed significantly softer spectra and are probably black hole X-ray binaries in the thermal state. One of them (a persistent source) is in a metal-poor GC. The 11 Chandra observations of NGC 3115 are listed in Table 1 of the reference paper. They were made during three epochs: one in 2001,two in 2010, and nine in 2012. All observations used the imaging array of the AXAF CCD Imaging Spectrometer (ACIS). This table contains the properties of the 482 detected point sources in the merged and single Chandra ACIS observations of NGC 3115 above a 2-sigma threshold and after eliminating a number of spurious sources associated with bright streaks on the ACIS-S1 chip and (in one case) on a CCD edge. 469 of these sources (indicated by values of obs_flag = '0') have a single entry in this table, based on their properties as derived from all of the available Chandra data for that position. There are 13 transient sources (having obs_flag = 'h') for which an additional entry is provided referring to their properties in the "high state", and based on the combination of their high-state observations, as shown in Figures 3(a) - 3(d) in the reference paper. For source number 198, there is a second additional entry provided referring to its properties in the "low state", and based on the combination of its low-state observations, as shown in Figure 3(c) in the reference paper. Thus, there are 496 entries (rows) in this table, i.e., 482 + 13 + 1. This table was created by the HEASARC in August 2015 based on the union of the machine-readable versions of Table 3 (the master source catalog) and Table 4 (the source counts, fluxes and hardness ratios in the merged observations) that were obtained from the ApJ web site. It does not contain the source counts and fluxes in the individual observations which were given in Table 5 of the reference paper. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2237cxo
- Title:
- NGC 2237 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2237CXO
- Date:
- 02 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 M<sub>sun</sub>. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890): <pre> 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr </pre> This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .