- ID:
- ivo://nasa.heasarc/ngc6231cxo
- Title:
- NGC 6231 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6231CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- NGC 6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. In the reference paper, the authors present high-spatial resolution Chandra ACIS-I X-ray data, wherein they detect 1,613 point X-ray sources. Their main aim was to clarify the global properties of NGC 6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and its initial mass function. The authors use X-ray data, complemented by optical and IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. In their study, the authors perform spectral modeling of group-stacked X-ray source spectra. The X-ray properties of the sources detected in the Chandra observations of NGC 6231, and their cross-identifications in the catalogs of Sung, Sana, and Bessell (2013 AJ, 145, 37; hereafter SSB); VPHAS+ (Drew et al., 2014, MNRAS, 440, 2036); and 2MASS (<a href="https://cdsarc.cds.unistra.fr/ftp/cats/II/246">CDS Cat. II/246</a>), and information about membership, H-alpha or IR excess, mass and luminosity are also provided. SSB derive a distance modulus for NGC 6231 of 11.0 (1,585 pc), a reddening E(B - V) = 0.47, and a nearly normal reddening law with R = 3.2. The present authors adopt these values for this work. NGC 6231 was observed twice in X-rays with the ACIS-I detector on-board the Chandra X-ray Observatory on 2005, July 3 to 4 (ObsId 5372) and 16 to 17 (ObsID 6291), respectively. The two pointings share the same center (aimpoint) but were performed with a different roll angle. Effective exposure times for the observations were 76.19 and 44.39 ks, respectively, making the total exposure time 120.58 ks. The data were filtered to retain the energy band 0.3 - 8.0 keV, and the full-field lightcurves were inspected to search for high-background periods, but none were found. Exposure maps were computed using standard CIAO software tasks. To these prepared datasets, the authors applied the source detection software PWDetect, a wavelet-based detection algorithm developed at INAF-Osservatorio Astronomico di Palermo. The PWDetect version used here is a modified one, able to detect sources in combined datasets, thus taking full advantage of the deep total exposure. The detection threshold was chosen such as to yield ten spurious detections in the field of view (FOV), for the given background counts. This is a more relaxed constraint than the more usual limit of one spurious detection per field, but is justified when the lowered threshold allows the detection of more than one hundred additional faint sources, as it was the case here or in the COUP Program's Orion data. This HEASARC table contains the list of 1,613 detected X-ray point sources and information about their optical and IR counterparts, where known. It does not contain the 275 additional candidate cluster members (where their candidacy was based on their having H-alpha or IR excesses) which lack X-ray counterparts and that were also listed in Table B.2 of the reference paper. This table was created by the HEASARC in December 2016 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/596/A82">CDS Catalog J/A+A/596/A82</a> file tableb.dat, which is the merger of tables B.1 (the list of 1,613 X-ray sources) and B.2 (the list of 1,888 optical and near-IR identifications of X-ray sources and of IR- and H-alpha-excess stars) from the reference paper, but excluding the 275 stars listed in the latter whose candidacy was based on their having H-alpha or IR excesses and which lack X-ray counterparts. # This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/ngc4636cxo
- Title:
- NGC 4636 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC4636CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This catalog lists the X-ray point-source population in the nearby Virgo elliptical galaxy NGC 4636 from three Chandra X-ray observations. These observations, totaling ~193 ks after time filtering, were taken with the Advanced CCD Imaging Camera (ACIS) over a three-year period. Using a wavelet decomposition detection algorithm, the authors detected 318 individual point sources. For their analysis, they used a subset of 277 detections with >= net 10 counts (a limiting luminosity of approximately 1.2 x 10<sup>37</sup> erg s<sup>-1</sup> in the 0.5-2 keV band, outside the central 1.5 arcminutes bright galaxy core). This table contains this subset of 277 X-ray sources. The authors discuss the radial distribution of the point sources. Between 1.5 and 6 arcminutes from the center, 25% of the sources are likely to be background sources (active galactic nuclei (AGNs)) and 75% to be low-mass X-ray binaries (LMXBs) within the galaxy, while at radial distances greater than 6 arcminutes, background sources (AGN) will dominate the point sources. The authors explore short and long-term variability (over timescales of 1 day to three years) for X-ray point sources in this elliptical galaxy. 54 sources (24%) in the common ACIS fields of view show significant variability between observations. Of these, 37 are detected with at least 10 net counts in only one observation and thus may be "transient." In addition, ~10% of the sources in each observation show significant short-term variability. The cumulative luminosity function (LF) for the point sources in NGC 4636 can be represented as a power law of slope Alpha = 1.14 +/- 0.03. The authors do not detect, but estimate an upper limit of ~4.5 x 10<sup>37</sup> erg s<sup>-1</sup> to the current X-ray luminosity of, the historical supernova SN1939A. They find 77 matches between X-ray point sources and globular cluster (GC) candidates found in deep optical images of NGC 4636. In the annulus from 1.5 to 6 arcminutes of the galaxy center, 48 of the 129 X-ray point sources (37%) with >=10 net counts are matched with GC candidates. Since they expect 25% of these sources to be background AGN, the percentage matched with GCs could be as high as 50%. Of these matched sources, the authors find that ~70% are associated with the redder GC candidates, those that are thought to have near-solar metal abundance. The fraction of GC candidates with an X-ray point source match decreases with decreasing GC luminosity. The authors do not find a correlation between the X-ray luminosities of the matched point sources and the luminosity or color of the host GC candidates. The LFs of the X-ray point sources matched with GCs and those that are unmatched have similar slopes over 1.8 x 10<sup>37</sup> erg s<sup>-1</sup> <= L<sub>x</sub> <= 1 x 10<sup>38</sup> erg s<sup>-1</sup>. This table was created by the HEASARC in July 2009 based on electronic versions of Tables 2 and 3 from the paper obtained from the ApJ web site, but excluding the 7 entries in Table 3 which corresponded to weaker X-ray sources which were not listed in Table 2. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2237cxo
- Title:
- NGC 2237 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2237CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 M<sub>sun</sub>. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890): <pre> 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr </pre> This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6334cxo
- Title:
- NGC 6334 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6334CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. The authors have analyzed a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000 - 30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation. This table was created by the HEASARC in August 2009 based on the electronic version of table 1 from the above reference which were obtained from the AJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc752cxo
- Title:
- NGC 752 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC752CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table provides a list of X-ray sources detected in a ~140 ks Chandra X-ray observation of the open cluster NGC 752. For the sources with 2MASS counterparts, the values of their magnitudes in the J, H and K bands are also given. Very little is known about the evolution of stellar activity between the ages of the Hyades (0.8 Gyr) and the Sun (4.6 Gyr). To gain information on the typical level of coronal activity at a star's intermediate age, the authors have studied the X-ray emission from stars in the 1.9 Gyr-old open cluster NGC 752. They analyzed a ~ 140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. They detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field of view are detected in the X-ray observation. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. These data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity L<sub>x</sub> of the cluster members with masses of 0.8 to 1.2 solar masses is 1.3 x 10<sup>28</sup> erg s<sup>-1</sup>, which is approximately a factor of 6 times less intense than that observed in the younger Hyades. Given that L<sub>x</sub> is proportional to the square of a star's rotational rate, the median L<sub>x</sub> of NGC 752 is consistent, for t >= 1 Gyr, with a decaying rate in rotational velocities v<sub>rot</sub> ~ t<sup>-alpha</sup> with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than that observed between the Pleiades and the Hyades (where alpha <0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at an age of ~ 1 Gyr. The 135 ks observation of NGC 752 was performed by the Chandra ACIS camera on September 29, 2003 starting at 21:11:59 UT. The X-ray source detection was performed on the event list using the Wavelet Transform detection algorithm developed at Palermo Astronomical Observatory PWDETECT, available at <a href="http://oapa.astropa.unipa.it/progetti_ricerca/PWDetect">http://oapa.astropa.unipa.it/progetti_ricerca/PWDetect</a>. Initially, the energy range 0.2 - 10 keV was selected and the threshold for source detection was taken as to ensure a maximum of 1-2 spurious sources per field. 169 sources were detected in this way. The analysis of these sources hardness ratios showed, however, that all the catalogued stars in the field had low hardness ratios, HR < ~ 0.2, where HR is the number of photons in the 2 - 8 keV band over the number in the 0.5 - 2 keV band. Thus, to maximize the detection of stellar sources, PWDETECT was applied to the event list in the energy range from 0.5 - 2 keV. Using a detection threshold which ensures less than 1 spurious source per field leads to the detection of 188 sources, while lowering this threshold to 10 spurious sources per field, allows 262 sources to be identified in this energy range. This is a significant increase (well above the number expected if all the additional sources were spurious), thus the authors retained this list of 262 sources as their final list of sources in the NGC 752 field, with the caveat that ~ 10 sources among them are likely spurious. Note that the existence of ~ 10 spurious sources in the list is not so much of a problem in this context, because cluster members or candidate members are identified by the existence of a visible or near-IR counterpart. The authors searched for 2MASS counterparts to the X-ray sources using the 2MASS Point Source Catalogue (PSC) and a search radius of 3 arcsec and found a counterpart for 43 sources. Searching within the Point Source Reject Table of the 2MASS Extended Mission leads to the further identification of 1 counterpart (source number 87). This table was created by the HEASARC in October 2008 based on the electronic version of Table 6 from the reference paper which was obtained from the CDS website, i.e., their catalog J/A+A/490/113 file table6.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc4472cxo
- Title:
- NGC 4472 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC4472CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Chandra X-Ray Point Source Catalog of the giant elliptical galaxy NGC 4472 contains the results of a Chandra ACIS-S/Hubble Space Telescope (HST) study of the point sources of this Virgo Cluster galaxy. The authors ran WAVDETECT from the CIAO 2.2 software package using wavelet scales from 1 to 16 pixels spaced by factors of 2, setting a false-source probability detection threshold of 10<sup>-6</sup>, which should yield an expectation value of slightly less than one false source over the entire ACIS-S chip. They identify 144 X-ray point sources outside the nuclear region, 72 of which are located within the HST fields. An additional 3 sources are within 8" of the center of the galaxy and appear to be associated either with a weak active galactic nucleus or with brightness enhancements in the hot interstellar gas. One additional source (not included in this table) appears to be a spurious detection, as WAVDETECT assigns it a count rate of 1.5 counts, and visual inspection fails to find evidence of a source at that location. The optical data show 1102 sources whose half-light radii are small enough to be globular cluster candidates, 829 of which also have colors consistent with being globular clusters (with only four in the restricted central 10" region). 30 X-ray sources within 0.7" of an optical source with optical colors consistent with being globular clusters were found. Two additional sources show optical colors outside the globular cluster color range and are likely to be either foreground or background objects. The thirty globular cluster matches are likely to be low-mass X-ray binaries (LMXBs) associated with the globular clusters, while ~ 42 of the X-ray sources have no optical counterparts to V <~ 25 and I <~ 24, indicating that they are likely to be predominantly LMXBs in the field star population with a small amount of possible contamination from background active galactic nuclei. Thus approximately 40% of the X-ray sources are in globular clusters and ~ 4% of the globular clusters contain X-ray sources. This HEASARC table contains the X-ray data for the above-mentioned 147 detected X-ray sources, and the correlative optical data for the 30 optical counterparts which have colors consistent with being globular clusters. It does not contain the data from the full list of optical sources which were given in Table 2 of the reference paper. This table was created by the HEASARC in May 2007 based on CDS table J/ApJ/586/814 files table1.dat and table3.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2403cx2
- Title:
- NGC 2403 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2403CX2
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a comprehensive X-ray point source catalog of the galaxy NGC 2403, an outlying member of the M 81 group of galaxies, as part of the Chandra Local Volume Survey. The combined archival observations of this galaxy have an effective exposure time of 190 ks. When combined with the catalogs of sources in NGC 55 and NGC 4214 given in this same reference paper, and the authors' previously published catalogs for NGC 300 (Binder et al. 2012, ApJ, 758, 15) and NGC 404 (Binder et al. 2013, ApJ, 763, 128), the CLVS contains 629 high-significance X-ray sources total down to a limiting unabsorbed luminosity of ~ 5 x 10<sup>35</sup> erg s<sup>-1</sup> in the 0.35-8.0 keV band in each of the five galaxies. In the reference paper, the authors present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, they carried out cross-correlations with multi-wavelength data sets. They searched overlapping Hubble Space Telescope observations for optical counterparts to their X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background active galactic nucleus, supernova remnant, or foreground star. The authors utilized archival X-ray observations: NGC 2403 was observed by the Chandra X-Ray Observatory using the ACIS-S array on five occasions for a total of 190 ks: <pre> Obs. ID Date Eff. Exposure time (ks) 2014 2001 Apr 17 35 4627 2004 Aug 09 31 4628 2004 Aug 23 42 4629 2004 Oct 03 40 4630 2004 Dec 22 42 </pre> The iterative source detection strategy that was used is described in Section 2.3 of Binder et al. (2012, ApJ, 758, 15). ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 or 0.35 - 8.0 keV. To be included in the final NGC 2403 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands. The final CLVS source catalog for NGC 2403 contains 190 sources. This table was created by the HEASARC in September 2015 based on machine-readable versions of those parts of Table 5 and 8 from the reference paper which pertained to the 190 high-significance (pns < 4 x 10<sup>-6</sup>) X-ray sources which were detected in NGC 2403. It does not include the 108 lower-significance sources in NGC 2403 which had 4 x 10<sup>-6</sup> < pns < 1.0 x 10<sup>-3</sup>, some of which are likely to be genuine X-ray sources. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc1291cxo
- Title:
- NGC 1291 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC1291CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from a study of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. Utilizing the four available Chandra observations totaling an effective exposure of 179 ks, the authors detect 169 X-ray point sources in the galaxy in the full band (0.3 - 8.0 keV) with a false-positive probability threshold of 10<sup>-6</sup> (implying approximately 2 false detections given the size of the image). Of these sources, 75 are in the bulge and 71 are in the ring. The authors report photometric properties of these sources in a point-source catalog. There are ~ 40% of the bulge sources and ~ 25% of the ring sources showing > 3-sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (~ 75%) and ring (~ 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity active galactic nucleus (AGN) with moderate obscuration; spectral variability is observed between individual observations. The authors construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. They reach 90% completeness limits of ~ 1.5 x 10<sup>37</sup> and ~ 2.2 x 10<sup>37</sup> erg s<sup>-1</sup> for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. In the paper, the authors perform detailed population synthesis modeling of the XRB populations in NGC 1291, which suggests that the observed combined XLF is dominated by an old LMXB population. They compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative overdensity of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF. This table was created by the HEASARC in May 2012 based on an electronic version of Table 2 from the reference paper obtained from the ApJ website. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc4278cxo
- Title:
- NGC 4278 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC4278CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table lists some of the properties of the discrete X-ray sources detected in the authors' monitoring program of the globular cluster (GC)-rich elliptical galaxy, NGC 4278, observed with Chandra ACIS-S in six separate pointings, resulting in a co-added exposure of 458 ks. From this deep observation, 236 sources have been detected within the region overlapped by all observations, 180 of which lie within the D<sub>25</sub> ellipse angular diameter of the galaxy. These 236 sources range in X-ray luminosity L<sub>X</sub> from 3.5 x 10<sup>36</sup> erg s<sup>-1</sup> (with 3-sigma upper limit <= 1 x 10<sup>37</sup> erg s<sup>-1</sup>) to ~2 x 10<sup>40</sup> erg s<sup>-1</sup>, including the central nuclear source which has been classified as a LINER. From optical data, 39 X-ray sources have been determined to be coincident with a GC, these sources tend to have high X-ray luminosity, with 10 of these sources exhibiting L<sub>X</sub> > 1 x 10<sup>38</sup> erg s<sup>-1</sup>. From X-ray source photometry, it has been determined that the majority of the 236 point sources that have well-constrained colors have values that are consistent with typical low-mass X-ray binary spectra, with 29 of the sources expected to be background objects from the log N-log S relation. There are 103 sources in this population that exhibit long-term variability, indicating that they are accreting compact objects. Three of these sources have been identified as transient candidates, with a further three possible transients. Spectral variations have also been identified in the majority of the source population, where a diverse range of variability has been identified, indicating that there are many different source classes located within this galaxy. This HEASARC table contains the master source list (Table 3 of the reference paper) and the X-ray properties of the sources in the co-added observations (Table 4 of the reference paper), but not the X-ray properties of the sources in the 6 individual observations (Tables 5-10 of the reference paper). The details of the six individual pointings used in this study, e.g., the Chandra ObsIDs, dates, exposure times and cleaned exposure times, are given in Table 1 of the reference paper, and repeated here: <pre> Obs. No.OBSID Date Exposure (s) Cleaned Exposure (s) 1 4741 2005 Feb 3 37462.0 37264.5 2 7077 2006 Mar 16 110303.8 107736.7 3 7078 2006 Jul 25 51433.2 48076.2 4 7079 2006 Oct 24 105071.7 102504.6 5 7081 2007 Feb 20 110724.0 107564.5 6 7080 2007 Apr 20 55824.8 54837.5 Total Co-added 470819.5 457984.0 </pre> Notes. The pointing OBSID 7181 was taken before OBSID 7080, so to maintain the time sequence of the exposures these observation numbers have been labeled as above in the reference paper. The details of the energy bands and X-ray colors used in this study are given in Table 2 of the reference paper, and repeated here: <pre> Band/Color Energy Range/Definition Broad (B) 0.3-8 keV Soft (S) 0.3-2.5 keV Hard (H) 2.5-8 keV Soft 1 (S1) 0.3-0.9 keV Soft 2 (S2) 0.9-2.5 keV Conventional broad (Bc) 0.5-8 keV Conventional soft (Sc) 0.5-2 keV Conventional hard (Hc) 2-8 keV Hardness ratio HR (Hc-Sc)/(Hc+Sc) X-ray color C21 -log(S2) + log(S1) = log(S1/S2) X-ray color C32 -log(H) + log(S2) = log(S2/H) </pre> This table was created by the HEASARC in April 2009 based on machine-readable versions of Tables 3 and 4 from the reference paper which were obtained from the ApJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc4214cxo
- Title:
- NGC 4214 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC4214CXO
- Date:
- 18 Apr 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a comprehensive X-ray point source catalog of the IAB(s)m galaxy NGC 4214 similar to the LMC, one of the nearest examples of a starburst galaxy with a substantial population of Wolf-Rayet stars, as part of the Chandra Local Volume Survey. The combined archival observations of this galaxy have an effective exposure time of 79 ks. When combined with the catalogs of sources in NGC 55 and NGC 2403 given in this same reference paper, and the authors' previously published catalogs for NGC 300 (Binder et al. 2012, ApJ, 758, 15) and NGC 404 (Binder et al. 2013, ApJ, 763, 128), the CLVS contains 629 high-significance X-ray sources total down to a limiting unabsorbed luminosity of ~ 5 x 10<sup>35</sup> erg s<sup>-1</sup> in the 0.35-8.0 keV band in each of the five galaxies. In the reference paper, the authors present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, they carried out cross-correlations with multi-wavelength data sets. They searched overlapping Hubble Space Telescope observations for optical counterparts to their X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background active galactic nucleus, supernova remnant, or foreground star. The authors utilized archival X-ray observations: NGC 4214 was observed by the Chandra X-Ray Observatory using the ACIS-S array on three occasions for a total of 79 ks: <pre> Obs. ID Date Eff. Exposure time (ks) 2030 2001 Oct 16 25 4743 2004 Apr 03 26 5197 2004 Jul 30 28 </pre> The iterative source detection strategy that was used is described in Section 2.3 of Binder et al. (2012, ApJ, 758, 15). ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 or 0.35 - 8.0 keV. To be included in the final NGC 4214 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands. The final CLVS source catalog for NGC 2403 contains 116 sources. This table was created by the HEASARC in September 2015 based on machine-readable versions of those parts of Table 5 and 8 from the reference paper which pertained to the 116 high-significance (pns < 4 x 10<sup>-6</sup>) X-ray sources which were detected in NGC 4214. It does not include the 95 lower-significance sources in NGC 4214 which had 4 x 10<sup>-6</sup> < pns < 1.0 x 10<sup>-3</sup>, some of which are likely to be genuine X-ray sources. This is a service provided by NASA HEASARC .