- ID:
- ivo://nasa.heasarc/champsdssa
- Title:
- CHAMP/SDSS Nearby Low-Luminosity AGN Catalog
- Short Name:
- CHAMPSDSSA
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The combination of the Sloan Digital Sky Survey (SDSS) and the Chandra Multiwavelength Project (ChaMP; Green et al. 2004, ApJS, 150, 43) currently offers the largest and most homogeneously selected sample of nearby galaxies for investigating the relations between X-ray nuclear emission, nebular line emission, black hole masses, and the properties of the associated stellar populations. The authors provide X-ray spectral fits and valid uncertainties for all the galaxies with counts ranging from 2 to 1325 (mean 76, median 19). They present in their paper novel constraints that both X-ray luminosity L<sub>X</sub> and X-ray spectral energy distribution bring to the galaxy evolutionary sequence HII -> Seyfert/Transition Object -> LINER -> Passive suggested by optical data. In particular, the authors show that both L<sub>X</sub> and Gamma, the slope of the power law that best fits the 0.5 - 8 keV spectra, are consistent with a clear decline in the accretion power along the sequence, corresponding to a softening of their spectra. This implies that, at z ~ 0, or at low-luminosity active galactic nucleus (AGN) levels, there is an anticorrelation between Gamma and L/L<sub>Edd</sub>, opposite to the trend which is exhibited by high-z AGN (quasars). The turning point in the Gamma - L/L<sub>Edd</sub> LLAGN + quasars relation occurs near Gamma ~ 1.5 and L/L<sub>Edd</sub> ~ 0.01. Interestingly, this is identical to what stellar mass X-ray binaries exhibit, indicating that the authors have probably found the first empirical evidence for an intrinsic switch in the accretion mode, from advection-dominated flows to standard (disk/corona) accretion modes in supermassive black hole accretors, similar to what has been seen and proposed to happen in stellar mass black hole systems. The anticorrelation the authors find between Gamma and L/L<sub>Edd</sub> may instead indicate that stronger accretion correlates with greater absorption. Therefore, the trend for softer spectra toward more luminous, high-redshift, and strongly accreting (L/L<sub>Edd</sub> >~ 0.01) AGNs/quasars could simply be the result of strong selection biases reflected in the dearth of type 2 quasar detections. The cross-match of all ChaMP sky regions imaged by Chandra/ACIS with the SDSS DR4 spectroscopic footprint results in a parent sample of 15,955 galaxies on or near a chip and a subset of 199 sources that are X-ray detected. Among those, only 107 sources have an off-axis angle (OAA) Theta <0.2 degrees and avoid ccd=8 due to high serial readout noise; these 107 objects comprise the main sample that the authors employ for this study and that are listed in this table. The authors performed direct spectral fits to the X-ray counts distribution using the full instrument calibration, known redshift, and Galactic 21-cm column nH<sub>Gal</sub>. Source spectra were extracted from circular regions with radii corresponding to energy encircled fractions of ~90%, while the background region encompasses a 20 arcsec annulus, centered on the source, with separation 4 arcsecs, from the source region. Any nearby sources were excised, from both the source and the background regions. The spectral fitting was done via yaxx ('Yet Another X-ray eXtractor': Aldcroft 2006, BAAS, 38, 376), an automated script that employs the CIAO Sherpa tool. Each spectrum was fitted in the range 0.5 - 8 keV by two different models: (1) a single power law plus absorption fixed at the Galactic 21-cm value (model 'PL'), and (2) a fixed power law of photon index Gamma = 1.9 plus intrinsic absorption of column nH (model 'PLfix'). For the nine objects with more than 200 counts, the authors employed a third model in which both the slope of the power law and the intrinsic absorption were free to vary (model 'PL_abs'). This table was created by the HEASARC in January 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/705/1336/">CDS Catalog J/ApJ/705/1336/</a> file table1.dat. This is a service provided by NASA HEASARC .
« Previous |
1 - 10 of 22
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/glxsdssqso
- Title:
- GALEX/SDSS Quasar Catalog
- Short Name:
- GLXSDSSQSO
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the result of an analysis of the broad-band UV and optical properties of z ~< 3.4 quasars matched in the Galaxy Evolution Explorer (GALEX) General Data Release 1 (GR1) and the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3). Of the 6371 SDSS DR3 quasars covered by 204 GALEX GR1 tiles and listed in this table, 5380 (84%) have near-UV detections, while 3034 (48%) have both near-UV and far-UV detections using a matching radius of 7 arcseconds. Most of the DR3 sample quasars are detected in the near-UV until z ~ 1.7, with the near-UV detection fraction dropping to ~50% by z ~ 2. Statistical tests performed on the distributions of non-detections indicate that the optically selected quasars missed in the UV tend to be optically faint or at high redshift. The GALEX positions are shown to be consistent with the SDSS astrometry to within an rms scatter of 0.6 - 0.7 arcsecs in each coordinate, and the empirically determined photometric errors from multi-epoch GALEX observations significantly exceed the Poissonian errors quoted in the GR1 object catalogs. The UV-detected quasars are well separated from stars in UV-optical color-color space, with the UV-optical relative colors suggesting a marginally detected population of reddened objects due to absorption along the line of sight or dust associated with the quasar. The resulting spectral energy distributions (SEDs) cover ~350 - 9000 Angstroms (rest frame), where the overall median SED peaks near the Lyman-Alpha emission line, as found in other UV quasar studies. The large sample size allows the authors to construct median SEDs in small bins of redshift and luminosity, and they find that the median SED becomes harder (bluer) at UV wavelengths for quasars with lower continuum luminosity. The detected UV-optical flux as a function of redshift is qualitatively consistent with attenuation by intervening Lyman-absorbing clouds. This table was created by the HEASARC in October 2009 based on the electronic version of Table 2 from the reference paper which was obtained from the CDS (their catalog J/AJ/133/1780 file table2.dat). This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/glxsdssqs2
- Title:
- GALEX/SDSS z=0.5-1.5 QSO Candidates Catalog
- Short Name:
- GLXSDSSQS2
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- A sample of ~60,000 objects from the combined Sloan Digital Sky Survey-Galaxy Evolution Explorer (SDSS-GALEX) database with UV-optical colors that should isolate QSOs in the redshift range 0.5 to 1.5 is discussed. The authors use SDSS spectra of a subsample of ~ 4,500 to remove stellar and galaxy contaminants in the sample to a very high level, based on the 7-band photometry. In their paper, they discuss the distributions of redshift, luminosity, and reddening of the 19,100 QSOs (~96%) that they estimate to be present in their final sample of 19,812 point sources. This latter catalog is available in the present table. This paper is based on archival data from the Galaxy Evolution Explorer (GALEX) which is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034, and on data from the SDSS. This table was created by the HEASARC in March 2011 based on the electronic version of Table 2 from the reference paper which was obtained from the AJ web site. Some of the values for the name parameter in the HEASARC's implementation of this table were corrected in April 2018. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/osqsonvss
- Title:
- Optically-Selected QSOS NVSS-Detected Source Catalog
- Short Name:
- OSQSONVSS
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors used the 1.4-GHz NRAO VLA Sky Survey (NVSS) to study radio sources in two color-selected QSO samples: a volume-limited sample of 1,313 QSOs defined by M<sub>i</sub> < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2,471 QSOs with m<sub>r</sub> <= 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4-mJy NVSS catalog limit and are powered primarily by active galactic nuclei (AGNs). The space density, rho, of the low-redshift QSOs evolves as rho ~ (1 + z)<sup>6</sup>. In both redshift ranges, the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S<sub>p</sub> of ~ 0.3 mJy/beam and ~ 0.05 mJy/beam in the low- and high-redshift samples, corresponding to spectral luminosities log L<sub>1.4GHz</sub> ~ 22.7 and ~ 24.1 W/Hz, respectively. The authors suggest that the faint radio sources are powered by star formation at rates dM/dt of ~ 20 M_{sun}_/yr in the moderate luminosity (median M<sub>i</sub> of ~ -23.4) low-redshift QSOs and dM/dt ~ 500M<sub>sun</sub>/yr in the very luminous (median M<sub>i</sub> ~ -27.5) high-redshift QSOs. Such luminous starbursts (<log(L<sub>IR</sub>/L<sub>sun</sub>)> ~ 11.2 and ~ 12.6, respectively) are consistent with "quasar mode" accretion in which cold gas flows fuel both AGN and starburst. The SDSS DR7 QSO catalog (Schneider et al. 2010, AJ, 139, 2360) is complete to i = 19.1 mag over a solid angle of 2.66 sr around the North Galactic Pole. It contains the small sample of 179 color-selected QSOs defined by M<sub>i</sub> < -23 in the narrow redshift range 0.2 < z < 0.3 studied by Kimball et al. (2011, ApJ, 739, L29) and the larger sample of 1,313 QSOs in the wider redshift range 0.2 < z < 0.45 discussed here. Note that these magnitudes were calculated for an H<sub>0</sub>= 71 km/s/Mpc and Omega<sub>M</sub> = 0.27 modern flat LambdaCDM cosmology. The entire SDSS DR7 area is covered by the NVSS, whose source catalog is complete for statistical purposes above a peak flux density S<sub>p</sub> ~ 2.4 mJy/beam at 1.4 GHz. In the redshift range 0.2 < z < 0.45 the 45" FWHM (full width between half-maximum points) beam of the NVSS spans 150 - 250 kpc. There are 163 (12%) NVSS detections of the 1,313 QSOs in the redshift range 0.2 < z < 0.45 which are listed in Table 1 of the reference paper. The authors also chose a magnitude-limited sample of all 2,471 color-selected DR7 QSOs brighter than m<sub>r</sub> = 18.5 in the redshift range 1.8 < z < 2.5. The NVSS detected radio emission stronger than S = 2.4 mJy from only 191 (8%) of them: these are listed in Table 3 of the reference paper. This HEASARC table contains the contents of both samples described above. It thus has 163 + 191 = 354 entries, the sum of Tables 1 and 3 from the reference paper. To select only the entries from Table 1, the user should select entries with redshifts from 0.2 to 0.45. To select only the entries from Table 3, the user should select entries with redshifts > 1.8. This table was created by the HEASARC in January 2015 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/768/37">CDS Catalog J/ApJ/768/37</a> files table1.dat and table3.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/rassdssagn
- Title:
- ROSAT All-Sky Survey and SDSS DR5 Sample of X-Ray Emitting AGN
- Short Name:
- RASS/SDSSAGN
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains further results of a program aimed at yielding ~ 10<sup>4</sup> fully characterized optical identifications of ROSAT X-ray sources. The program employs X-ray data from the ROSAT All Sky Survey (RASS) and both optical imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS). RASS/SDSS data from 5740 deg<sup>2</sup> of sky spectroscopically covered in SDSS Data Release 5 (DR5) provide an expanded catalog of 7000 confirmed quasars and other active galactic nuclei (AGN) that are probable RASS identifications. Again, in this expanded catalog the identifications as X-ray sources are statistically secure, with only a few percent of the SDSS AGNs likely to be randomly superposed on unrelated RASS X-ray sources. Most identifications continue to be quasars and Seyfert 1 galaxies with 15 < m < 21 and 0.01 < z < 4, but the total sample size has grown to include very substantial numbers of even quite rare AGN, e.g., it now includes several hundreds of candidate X-ray-emitting BL Lac objects and narrow-line Seyfert 1 galaxies. In addition to exploring rare subpopulations, such a large total sample may be useful when considering correlations between the X-ray and the optical and may also serve as a resource list from which to select the ``best'' object (e.g., the X-ray-brightest AGN of a certain subclass at a preferred redshift or luminosity) for follow-up X-ray spectral or alternate detailed studies. Much more information on the SDSS is available at the project's web site at <a href="http://www.sdss.org/">http://www.sdss.org/</a>. This table was created by the HEASARC in February 2007 based on the combination of the electronic versions of tables 1 through 6 from the above reference which were obtained from the electronic AJ website. It replaces a previous version containing the results presented by Anderson et al. (2003, AJ, 126, 2209) which were based on a cross-correlation of the RASS with optical data from very early on in the SDSS program, e.g., extending back to the 'Early Data Release' before SDSS photometric calibrations were complete. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/rassdsstar
- Title:
- ROSAT All-Sky Survey and SDSS Sample of X-Ray Emitting Stars
- Short Name:
- RASSDSSTAR
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. The authors use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15<sup>mag</sup>). Instead, the authors use SDSS photometry, correlations with the Two Micron All Sky Survey (2MASS) and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Their sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. The authors derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate their X-ray luminosities L<sub>X</sub>. They also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Much more information on the SDSS is available at the project's web site at <a href="http://www.sdss.org/">http://www.sdss.org/</a>. This table was created by the HEASARC in April 2009 based on the the machine-readable version of Table 4 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/rasssdssgc
- Title:
- ROSAT All-Sky Survey and Sloan Digital Sky Survey DR7 Galaxy Clusters
- Short Name:
- RASSSDSSGC
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors use ROSAT All-Sky Survey (RASS) broad-band X-ray images and the optical clusters identified from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) to estimate the X-ray luminosities around ~65,000 candidate galaxy clusters with masses >~10<sup>13</sup> h<sup>-1</sup> M<sub>sun</sub> based on an optical to X-ray (OTX) code that they developed. They obtain a catalog with X-ray luminosities for all 64,646 clusters. A total of 34,522 (~53%) of these clusters have a signal-to-noise ratio S/N > 0 after subtracting the background signal. According to the reference paper (but see HEASARC Caveats section below), this catalog contains 817 clusters (473 at redshift z <= 0.12) with S/N > 3 for their X-ray detections (an additional 12,629 clusters have 3 >= S/N > 1 and 21,076 clusters have 1 >= S/N > 0). The authors find about 65% of these X-ray clusters have their most massive member located near the X-ray flux peak; for the remaining 35%, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. In the reference paper, the authors investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, although the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, they find that massive haloes with masses >~10<sup>14</sup> h<sup>-1</sup> M<sub>sun</sub> contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses <~10<sup>14</sup> h<sup>-1</sup> M<sub>sun</sub> where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses >~10<sup>14</sup> h<sup>-1</sup> M<sub>sun</sub> that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. The cluster catalog containing the optical properties of member galaxies and the X-ray luminosity is also available at <a href="http://gax.shao.ac.cn/data/Group.html">http://gax.shao.ac.cn/data/Group.html</a>. The optical data used in this analysis are taken from the SDSS galaxy group catalogs of Yang et al. (2007, ApJ, 671, 153), constructed using the adaptive halo-based group finder of Yang et al. (2005, MNRAS, 356, 1293), here updated to DR7. The parent galaxy catalog is the New York University Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al. 2005, AJ, 129, 2562) based on the SDSS DR7 (Abazajian et al. 2009, ApJS, 182, 543), which contains an independent set of significantly improved reductions. In this study, the authors adopt a Lambda cold dark matter cosmology whose parameters are consistent with the 7-year data release of the WMAP mission: Omega<sub>m</sub> = 0.275, Omega<sub>Lambda</sub> = 0.725, h = H<sub>0</sub>/(100 km s<sup>-1</sup> Mpc<sup>-1</sup>) = 0.702, and sigma<sub>8</sub> = 0.816. This table was created by the HEASARC in June 2017 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/439/611">CDS Catalog J/MNRAS/439/611</a> file catalog.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/sdssnbckde
- Title:
- SDSS NBCKDE Catalog of Photometrically Selected Quasar Candidates
- Short Name:
- SDSSNBCKDE
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a catalog of 1,015,082 quasar candidates selected from the photometric imaging data of the Sloan Digital Sky Survey (SDSS) using a non-parametric Bayesian classification kernel density estimator (NBC-KDE). It excludes 157,075 initial candidates that were culled as known or likely contaminants. The objects are all point sources to a limiting magnitude of i = 21.3 from 8417 deg<sup>2</sup> of imaging from SDSS Data Release 6 (DR6). This sample extends the previous catalog (Paper I: Richards et al. 2004, ApJS, 155, 257) by using the latest SDSS public release data and probing both ultraviolet (UV)-excess and high-redshift quasars. While the addition of high-redshift candidates reduces the overall efficiency (quasars:quasar candidates) of the catalog to ~80%, it is expected to contain no fewer than 850,000 bona fide quasars, which is ~8 times the number of the previous sample and ~10 times the size of the largest spectroscopic quasar catalog. Cross-matching between this photometric catalog and spectroscopic quasar catalogs from both the SDSS and 2dF survey yields 88,879 spectroscopically confirmed quasars. For judicious selection of the most robust UV-excess sources (~500,000 objects in all), the efficiency is nearly 97 - more than sufficient for detailed statistical analyses. The catalog's completeness to type 1 (broad-line) quasars is expected to be no worse than 70%, with most missing objects occurring at z < 0.7 and 2.5 < z < 3.0. In addition to classification information, the authors provide photometric redshift estimates (typically good to Delta(z) +/- 0.3 [2-sigma]) and cross-matching with radio, X-ray, and proper-motion catalogs. Finally, the authors have considered the catalog's utility for determining the optical luminosity function of quasars and are able to confirm the flattening of the bright-end slope of the quasar luminosity function at z ~ 4 as compared to z ~ 2. Much more information on the SDSS is available at the project's web site at <a href="http://www.sdss.org/">http://www.sdss.org/</a>. This table was created by the HEASARC based on an electronic version of Table 1 in the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/sdssbalqso
- Title:
- Sloan Digital Sky Survey Broad Absorption Line Quasars Catalog: 3rd Data Release
- Short Name:
- SDSSBALQSO
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Sloan Digital Sky Survey (SDSS) Broad Absorption Line (BAL) Quasars Catalog (based on the 3rd SDSS Data Release) contains a total of 4784 unique BAL quasars from the SDSS DR3 (<a href="https://cdsarc.cds.unistra.fr/ftp/cats/VII/243">CDS Cat. <VII/243></a>). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km/s in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift z, with the power-law spectral index and amount of dust reddening as additional free parameters. The authors characterize their sample through the traditional 'balnicity' index BI and a revised absorption index AI, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7 <= z <= 4.38, they identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5 <= z <= 2.15, they identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. They find that BAL quasars may have broader emission lines on average than other quasars. Much more information on the SDSS is available at the project's web site at <a href="http://www.sdss.org/">http://www.sdss.org/</a>. This table was created by the HEASARC in July 2008 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/165/1">CDS catalog J/ApJS/165/1</a> file table4.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/sdssbalqs2
- Title:
- Sloan Digital Sky Survey Broad Absorption Line Quasars Catalog: 5th Data Release
- Short Name:
- SDSSBALQS2
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- No Description Available
- « Previous
- Next »
- 1
- 2
- 3