- ID:
- ivo://CDS.VizieR/J/MNRAS/457/4205
- Title:
- WASP-22, WASP-41, WASP-42, WASP-55
- Short Name:
- J/MNRAS/457/4205
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55 b is the most discrepant with a mass of 0.63M_Jup_ and a radius of 1.34R_Jup_. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6+/-1.5d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of {lambda}=6+/-11{deg}. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/222/15
- Title:
- WATCHDOG: an all-sky database of Galactic BHXBs
- Short Name:
- J/ApJS/222/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (~40%) of the Galactic transient BHXB outburst sample over the past ~20 years. Our findings suggest that this "hard-only" behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these "hard-only" outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.
- ID:
- ivo://CDS.VizieR/J/A+AS/130/233
- Title:
- WATCH Solar X-Ray Burst Catalogue
- Short Name:
- J/A+AS/130/233
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Catalogue containing solar X-ray bursts measured by the Danish Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) experiment aboard the Russian satellite GRANAT in the deca-keV energy range. Table 1 lists the periods during which solar observations with WATCH are available (WATCH ON-TIME) and where the bursts listed in the catalogue have been observed.
- ID:
- ivo://CDS.VizieR/J/ApJ/766/114
- Title:
- Water and methanol masers in G75.78+0.34
- Short Name:
- J/ApJ/766/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H_2_O and CH_3_OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ~3.7x10^4^/cm3, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ~6" to the east of the cometary UCH II region, with an electron density ~1.3x10^5^/cm3, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ~2" to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30M_{sun}_. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5{mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.
- ID:
- ivo://CDS.VizieR/J/ApJ/707/1
- Title:
- Water and Methanol masers in NGC 6334I(N)
- Short Name:
- J/ApJ/707/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334 I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a re-analysis of archival VLA continuum data, Two Micron All Sky Survey and Spitzer images. As shown previously, the brightest 1.3mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6cm along with a new spatial component at 7mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH_3_OH rotation temperatures of 165+/-9K and 145+/-12K for SMA1 and SMA2, respectively. We estimate a diameter of 1400AU for the SMA1 hot-core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >~800AU separation binary that may explain the previously suggested precession of the outflow emanating from the SMA1 region. Compact line emission from SMA4 is weak, and none is seen toward SMA6. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5-4) and IRAC 4.5um emission; 24um emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6, while two others are associated with the Sandell source SM2. We also detect a total of 83 Class I CH_3_OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.
- ID:
- ivo://CDS.VizieR/J/A+A/617/L5
- Title:
- Water delivery in Pluto and Triton atmospheres
- Short Name:
- J/A+A/617/L5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Both Pluto and Triton possess thin, N_2_-dominated atmospheres controlled by sublimation of surface ices. We aim to constrain the influx and ablation of interplanetary dust grains into the atmospheres of both Pluto and Triton in order to estimate the rate at which oxygen-bearing species are introduced into both atmospheres. We use (i) an interplanetary dust dynamics model to calculate the flux and velocity distributions of interplanetary dust grains relevant for both Pluto and Triton and (ii) a model for the ablation of interplanetary dust grains in the atmospheres of both Pluto and Triton. We sum the individual ablation profiles over the incoming mass and velocity distributions of interplanetary dust grains in order to determine the vertical structure and net deposition of water to both atmospheres. Our results show that <2% of silicate grains ablate at either Pluto or Triton while approximately 75% and >99% of water ice grains ablate at Pluto and Triton, respectively. From ice grains, we calculate net water influxes to Pluto and Triton of ~3.8kg/d (8.5x10^3^H_2_O/cm^2^/s) and ~370kg/d (6.2x10^5^H_2_O/cm^2^/s), respectively. The significant difference in total water deposition between Pluto and Triton is due to the presence of Triton within Neptune's gravity well, which both enhances interplanetary dust particle (IDP) fluxes due to gravitational focusing and accelerates grains before entry into Triton's atmosphere, thereby causing more efficient ablation. We conclude that water deposition from dust ablation plays only a minor role at Pluto due to its relatively low flux. At Triton, water deposition from IDPs is more significant and may play a role in the alteration of atmospheric and ionospheric chemistry. We also suggest that meteoric smoke and smaller, unablated grains may serve as condensation nuclei for the formation of hazes at both worlds.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A9
- Title:
- Water ice spectra toward the Pipe Nebula
- Short Name:
- J/A+A/610/A9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H_2_O rich) and switching to apolar ice (CO rich). We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. The water ice absorption is positively detected at 3.0um in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same A_V_. The source with the highest water-ice optical depth shows CO ice absorption at 4.7um as well. The fractional abundance of CO ice with respect to water ice is 16+7-6%, and about half as much as the values typically seen in low-mass star-forming regions. A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation.
- ID:
- ivo://CDS.VizieR/J/A+A/587/A139
- Title:
- Water lines spectra of 4 protostellar objects
- Short Name:
- J/A+A/587/A139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Herschel/HIFI observations of 14 water lines in a small sample of galactic massive protostellar objects: NGC6334I(N), DR21(OH), IRAS16272-4837, and IRAS05358+3543. Using water as a tracer of the structure and kinematics, we aim to individually study each of these objects, to estimate the amount of water around them, but to also shed light on the high-mass star formation process. We analyze the gas dynamics from the line profiles using Herschel-HIFI observations acquired as part of the WISH key-project of 14 far-IR water lines (water, H_2_^17^O, H_2_^18^O), and several other species. Then through modeling of the observations using the RATRAN radiative transfer code, we estimate outflow, infall, turbulent velocities, molecular abundances, and investigate any correlation with the evolutionary status of each source. The four sources (plus previously studied W43-MM1) have been ordered in terms of evolution based on their SED: NGC64334I(N)-W43-MM1-DR21(OH)-IRAS16272-4837-IRAS05358+3543. The molecular line profiles exhibit a broad component coming from the shocks along the cavity walls associated with the protostars, and an infalling (or expansion for IRAS05358+3543) and passively heated envelope component, with highly supersonic turbulence likely increasing with the distance from the center. Accretion rates between 6.3x10^-5^ and 5.6x10^-4^M_{sun}_/yr are derived from the infall observed in three of our sources. The outer water abundance is estimated to be at the typical value of a few 10^-8^ while the inner abundance varies from 1.7x10^-6^ to 1.4x10^-4^ with respect to H_2_ depending on the source. We confirm that regions of massive star formation are highly turbulent and that the turbulence likely increases in the envelope with the distance to the star. The inner abundances are lower than the expected 10^-4^ perhaps because our observed lines do not probe deep enough into the inner envelope, or because photodissociation through protostellar UV photons is more efficient than expected. We show that the higher the infall/expansion velocity in the protostellar envelope, the higher is the inner abundance, maybe indicating that larger infall/expansion velocities generate shocks that will sputter water from the ice mantles of dust grains in the inner region. High-velocity water must be formed in the gas-phase from shocked material.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/61
- Title:
- Water maser and NH_3_ survey of GLIMPSE EGOs
- Short Name:
- J/ApJ/764/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a Nobeyama 45m H_2_O maser and NH_3_ survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5{mu}m emission. We observed the NH_3_(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms~50mK). The H_2_O maser detection rate is 68% (median rms~0.11Jy). The derived H_2_O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H_2_O masers and warm dense gas, as indicated by emission in the higher-excitation NH_3_ transitions, are most frequently detected toward EGOs also associated with both Class I and II CH_3_OH masers. Ninety-five percent (81%) of such EGOs are detected in H_2_O (NH_3_(3,3)), compared to only 33% (7%) of EGOs without either CH_3_OH maser type. As populations, EGOs associated with Class I and/or II CH_3_OH masers have significantly higher NH_3_ line widths, column densities, and kinetic temperatures than EGOs undetected in CH_3_OH maser surveys. However, we find no evidence for statistically significant differences in H_2_O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H_2_O maser luminosity and clump number density. H_2_O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A162
- Title:
- Water maser data of 380 galaxies
- Short Name:
- J/A+A/641/A162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Water megamaser emission at 22GHz has proven to be a powerful tool for astrophysical studies of active galactic nuclei (AGN) because it allows an accurate determination of the mass of the central black hole and of the accretion disc geometry and dynamics. However, after searches among thousands of galaxies, only ~200 of them have shown such spectroscopic features, most of them of uncertain classification. In addition, the physical and geometrical conditions under which a maser activates are still unknown. We characterize the occurrence of water maser emission in an unbiased sample of AGN by investigating the relation with the X-ray properties and the possible favourable geometry that is required to detect water maser. We searched for 22GHz maser emission in a hard X-ray selected sample of AGN, taken from the INTEGRAL/IBIS survey above 20keV. Only half of the 380 sources in the sample have water maser data. We also considered a volume-limited sub-sample of 87 sources, for which we obtained new observations with the Green Bank and Effelsberg telescopes (for 35 sources). We detected one new maser and increased its radio coverage to 75%. The detection rate of water maser emission in the total sample is 15+/-3%. This fraction increases to 19+/-5% for the complete sub-sample, especially when we consider type 2 (22+/-5% and 31+/-10% for the total and complete samples, respectively) and Compton-thick AGN (56+/-18% and 50+/-35% for the total and complete samples, respectively). No correlation is found between water maser and X-ray luminosity. We note that all types of masers (disc and jet) are associated with hard X-ray selected AGN. These results demonstrate that the hard X--ray selection may significantly enhance the maser detection efficiency over comparably large optical or infrared surveys. A possible decline in detection fraction with increasing luminosity might suggest that an extremely luminous nuclear environment does not favour maser emission. The large fraction of CT AGN with water maser emission could be explained in terms of geometrical effects. The maser medium would then be the very edge-on portion of the obscuring medium.