- ID:
- ivo://CDS.VizieR/I/291
- Title:
- XZ Catalog of Zodiacal Stars (XZ80Q)
- Short Name:
- I/291
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The XZ catalog was created at the U.S. Naval Observatory in 1977 by Richard Schmidt and Tom Van Flandern, primarily for the purpose of generating predictions of lunar occultations, and for analyzing timings of these events. It was designed to include all stars within 6d 40' of the ecliptic (the "Zodiac"), which is as far as the Moon's limb can ever get as seen from anywhere on the Earth's surface, leaving some margin for stellar proper motions and change in the obliquity of the ecliptic over the course of three centuries. The original version contained 32,221 entries; since that time, many changes have been made in succeeding versions, including better positions and proper motions, and the elimination and addition of stars. Details about the history of XZ catalog can be found in the "doc.txt" file. The XZ80Q revision has been developed from XZ80P, which was created by Mitsuru Soma. It is now complete over the Zodiac for stars down to visual magnitude 12.0. The "xz80q.dat" file contains the list of stars making the catalog; additional files provide details about double and variable stars included in the XZ80Q. The catalog includes also lists of the various existing names of the stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/I/238A
- Title:
- Yale Trigonometric Parallaxes, Fourth Edition
- Short Name:
- I/238A
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is a completely revised and enlarged edition of the General Catalogue of Trigonometric Stellar Parallaxes containing 15,994 parallaxes for 8,112 stars published before the end of 1995. In this Fourth Edition, 1,722 (27%) new stars have been added to those contained in the previous edition by Jenkins (1963). The mode of the parallax accuracy for the newly added stars (0.004" s.e.) is considerably better than in the previous editions (about 0.016"). Approximately 2300 stars are not in the Hipparcos Catalog. The catalog contains equatorial coordinates in the system of the FK4 for 1900, the total proper motion and its position angle, the weighted average absolute parallax and its standard error, the number of parallax observations, quality of interagreement of the different values, the visual magnitude and various cross identifications with other catalogs. Auxiliary information is listed, including UBV photometry, MK spectral types, data on the variability and binary nature of the stars, and miscellaneous information to aid in determining the reliability of the data.
- ID:
- ivo://CDS.VizieR/I/141
- Title:
- Yale Zone Catalogues Integrated
- Short Name:
- I/141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The various volumes of the Yale Zone Catalogues have been combined into a single, homogeneous, machine-readable volume, sorted by position, containing the information common to most of the volumes. Additional data are provided in separate files. The notes have been transcribed into a machine-readable form. Errors detected in the course of the preparation of the catalogue, as well as previously known errors, have been corrected, and supplementary data have been added.
- ID:
- ivo://CDS.VizieR/J/AJ/159/92
- Title:
- Yarkovsky drift measurements for NEAs
- Short Name:
- J/AJ/159/92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies, which can cause these orbits to slowly expand or contract with time. The effect is subtle (<da/dt>~10^-4^au/My for a 1km diameter object) and is thus generally difficult to measure. We analyzed both optical and radar astrometry for 600 Near-Earth Asteroids (NEAs) for the purpose of detecting and quantifying the Yarkovsky effect. We present 247 NEAs with measured drift rates, which is the largest published set of Yarkovsky detections. This large sample size provides an opportunity to examine the Yarkovsky effect in a statistical manner. In particular, we describe two independent population-based tests that verify the measurement of Yarkovsky orbital drift. First, we provide observational confirmation for the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. Second, we find that the observed ratio of negative to positive drift rates in our sample is 2.34, which, accounting for bias and sampling uncertainty, implies an actual ratio of 2.7_-0.7_^+0.3^. This ratio has a vanishingly small probability of occurring due to chance or statistical noise. The observed ratio of retrograde to prograde rotators is two times lower than the ratio expected from numerical predictions from NEA population studies and traditional assumptions about the sense of rotation of NEAs originating from various main belt escape routes. We also examine the efficiency with which solar energy is converted into orbital energy and find a median efficiency in our sample of 12%. We interpret this efficiency in terms of NEA spin and thermal properties.
- ID:
- ivo://CDS.VizieR/J/A+A/563/A120
- Title:
- Y Cyg light curves and time of minima
- Short Name:
- J/A+A/563/A120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Rapid advancements in light-curve and radial-velocity curve modelling, as well as improvements in the accuracy of observations, allow more stringent tests of the theory of stellar evolution. Binaries with rapid apsidal advance are particularly useful in this respect since the internal structure of the stars can also be tested. Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornerstones of critical tests of stellar evolutionary theory for massive stars. Nevertheless, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyse all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude.
- ID:
- ivo://CDS.VizieR/J/A+A/640/A43
- Title:
- 10-year Fermi LAT results for the Crab pulsar
- Short Name:
- J/A+A/640/A43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Crab pulsar is a bright gamma-ray source, which has been detected at photon energies up to ~1TeV. Its phase-averaged and phase-resolved gamma-ray spectra below 10GeV exhibit exponential cutoffs, while those above 10GeV apparently follow simple power laws. We re-visit the gamma-ray properties of the Crab pulsar with ten-year Fermi Large Area Telescope (LAT) data in the range of 60MeV-500GeV. With the phase-resolved spectra, we investigate the origins and mechanisms responsible for the emissions. The phaseograms were reconstructed for different energy bands and further analysed using a wavelet decomposition. The phase-resolved energy spectra were combined with the observations of ground-based instruments, such as MAGIC and VERITAS, to achieve a larger energy converage. We fitted power-law models to the overlapping energy spectra from 10GeV to ~1TeV. In the fit, we included a relative cross-calibration of energy scales between air-shower-based gamma-ray telescopes with the orbital pair-production telescope from the Fermi mission. We confirm the energy-dependence of the gamma-ray pulse shape and, equivalently, the phase-dependence of the spectral shape for the Crab pulsar. A relatively sharp cutoff at a relatively high energy of ~8GeV is observed for the bridge-phase emission. The E>10 GeV spectrum observed for the second pulse peak is harder than those for other phases. In view of the diversity of phase-resolved spectral shapes of the Crab pulsar, we tentatively propose a multi-origin scenario where the polar-cap, outer-gap, and relativistic-wind regions are involved.
- ID:
- ivo://CDS.VizieR/J/AJ/162/189
- Title:
- 125 years light curve of HS Hydrae with DASCH
- Short Name:
- J/AJ/162/189
- Date:
- 16 Mar 2022 11:44:07
- Publisher:
- CDS
- Description:
- HS Hydrae is a short period eclipsing binary (Porb=1.57day) that belongs to a rare group of systems observed to have rapidly changing inclinations. This evolution is due to a third star on an intermediate orbit, and results in significant differences in eclipse depths and timings year to year. Zasche & Paschke revealed that HS Hydrae's eclipses were rapidly fading from view, predicting they would cease around 2022. Using 25 days of photometric data from Sector 009 of the Transiting Exoplanet Survey Satellite (TESS), we find that the primary eclipses for HS Hydrae were only 0.00173{+/-}0.00007mag in depth in March 2019. This data from TESS likely represents the last eclipses detected from HS Hydrae. We also searched the Digitization of the Harvard Astronomical Plate Collection archive for historic data from the system. With a total baseline of over 125yr, this unique combination of data sets-from photographic plates to precision space-based photometry-allows us to trace the emergence and decay of eclipses from HS Hydrae, and further constrain its evolution. Recent TESS observations from Sector 035 confirm that eclipses have ceased for HS Hya, and we estimate they will begin again in 2195.
- ID:
- ivo://CDS.VizieR/J/ApJ/855/75
- Title:
- 24 years monitoring of Sun and Sun-like stars
- Short Name:
- J/ApJ/855/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We compare patterns of variation for the Sun and 72 Sun-like stars by combining total and spectral solar irradiance measurements between 2003 and 2017 from the SORCE satellite, Stromgren b, y stellar photometry between 1993 and 2017 from Fairborn Observatory, and solar and stellar chromospheric CaII H+K emission observations between 1992 and 2016 from Lowell Observatory. The new data and their analysis strengthen the relationships found previously between chromospheric and brightness variability on the decadal timescale of the solar activity cycle. Both chromospheric H+K and photometric b, y variability among Sun-like stars are related to average chromospheric activity by power laws on this timescale. Young active stars become fainter as their H+K emission increases, and older, less active, more Sun-age stars tend to show a pattern of direct correlation between photometric and chromospheric emission variations. The directly correlated pattern between total solar irradiance and chromospheric Ca ii emission variations shown by the Sun appears to extend also to variations in the Stromgren b, y portion of the solar spectrum. Although the Sun does not differ strongly from its stellar age and spectral class mates in the activity and variability characteristics that we have now studied for over three decades, it may be somewhat unusual in two respects: (1) its comparatively smooth, regular activity cycle, and (2) its rather low photometric brightness variation relative to its chromospheric activity level and variation, perhaps indicating that facular emission and sunspot darkening are especially well-balanced on the Sun.
- ID:
- ivo://CDS.VizieR/J/AJ/160/81
- Title:
- 20 years of Beta CVn HIRES/APF radial velocities
- Short Name:
- J/AJ/160/81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Uncovering the occurrence rate of terrestrial planets within the habitable zone (HZ) of their host stars has been a particular focus of exoplanetary science in recent years. The statistics of these occurrence rates have largely been derived from transiting planet discoveries, and have uncovered numerous HZ planets in compact systems around M-dwarf host stars. Here we explore the width of the HZ as a function of spectral type, and the dynamical constraints on the number of stable orbits within the HZ for a given star. We show that, although the Hill radius for a given planetary mass increases with larger semimajor axis, the width of the HZ for earlier-type stars allows for more terrestrial planets in the HZ than late-type stars. In general, dynamical constraints allow ~6 HZ Earth-mass planets for stellar masses >~0.7M{sun}, depending on the presence of farther out giant planets. As an example, we consider the case of Beta CVn, a nearby bright solar-type star. We present 20yr of radial velocities (RV) from the Keck/High Resolution Echelle Spectrometer (HIRES) and Automated Planet Finder (APF) instruments and conduct an injection-recovery analysis of planetary signatures in the data. Our analysis of these RV data rule out planets more massive than Saturn within 10 au of the star. These system properties are used to calculate the potential dynamical packing of terrestrial planets in the HZ and show that such nearby stellar targets could be particularly lucrative for HZ planet detection by direct imaging exoplanet missions.
- ID:
- ivo://CDS.VizieR/J/ApJS/190/203
- Title:
- 3.6 years of DIRBE NIR stellar light curves
- Short Name:
- J/ApJS/190/203
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The weekly averaged near-infrared fluxes for 2652 stars were extracted from the cold and warm era all-sky maps of the Diffuse Infrared Background Experiment (DIRBE). Since the DIRBE program only archived the individual Calibrated Infrared Observations for the 10 month cold era mission, the weekly averaged fluxes were all that were available for the warm era. The steps required to extract stellar fluxes are described as are the adjustments that were necessary to correct the results for several systematic effects. The observations are at a cadence of once a week for 3.6 years (~1300 days), providing continuous sampling on variable stars that span the entire period for the longest fundamental pulsators. The stars are divided into three categories: those with large amplitude of variability, smaller amplitude variables, and sources whose near-infrared brightness do not vary according to our classification criteria. We show examples of the results and the value of the added baseline in determining the phase lag between the visible and infrared.