- ID:
- ivo://CDS.VizieR/J/ApJ/719/1784
- Title:
- Yellow supergiants in the SMC
- Short Name:
- J/ApJ/719/1784
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The yellow supergiant content of nearby galaxies provides a critical test of massive star evolutionary theory. While these stars are the brightest in a galaxy, they are difficult to identify because a large number of foreground Milky Way stars have similar colors and magnitudes. We previously conducted a census of yellow supergiants within M31 and found that the evolutionary tracks predict a yellow supergiant duration an order of magnitude longer than we observed. Here we turn our attention to the Small Magellanic Cloud (SMC), where the metallicity is 10x lower than that of M31, which is important as metallicity strongly affects massive star evolution. The SMC's large radial velocity (~160km/s) allows us to separate members from foreground stars. Observations of ~500 candidates yielded 176 near-certain SMC supergiants, 16 possible SMC supergiants, along with 306 foreground stars, and provide good relative numbers of yellow supergiants down to 12M_{sun}_. Of the 176 near-certain SMC supergiants, the kinematics predicted by the Besancon model of the Milky Way suggest a foreground contamination of <=4%. After placing the SMC supergiants on the Hertzsprung-Russell diagram (HRD) and comparing our results to the Geneva evolutionary tracks, we find results similar to those of the M31 study: while the locations of the stars on the HRD match the locations of evolutionary tracks well, the models overpredict the yellow supergiant lifetime by a factor of 10. Uncertainties about the mass-loss rates on the main sequence thus cannot be the primary problem with the models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/645/A10
- Title:
- Yields for Z=1e-5 intermediate-mass stars
- Short Name:
- J/A+A/645/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic yields of intermediate-mass Z=10^-5^ stars between 3 and 7.5M_{sun}_, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Zini<=0.001 give positive yields of ^12^C, ^15^N, ^16^O, and ^26^Mg. The ^20^Ne, ^21^Ne, and ^24^Mg yields, which were reported to be negative at Zini=0.0001, become positive for Z=10^-5^. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
- ID:
- ivo://CDS.VizieR/J/A+A/490/769
- Title:
- Yields from extremely metal-poor stars
- Short Name:
- J/A+A/490/769
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The growing body of spectral observations of the extremely metal-poor (EMP) stars in the Galactic Halo provides constraints on theoretical studies of the chemical and stellar evolution of the early Universe. To calculate yields for EMP stars for use in chemical evolution calculations and to test whether such models can account for some of the recent abundance observations of EMP stars, in particular the highly C-rich EMP (CEMP) halo stars. We modify an existing 1D stellar structure code to include time-dependent mixing in a diffusion approximation. Using this code and a post-processing nucleosynthesis code we calculate the structural evolution and nucleosynthesis of a grid of models covering the metallicity range: -6.5<=[Fe/H]<=-3.0 (plus Z=0), and mass range: 0.85<=M<=3.0M_{sun}_, amounting to 20 stars in total.
- ID:
- ivo://CDS.VizieR/J/ApJ/855/63
- Title:
- Yields of Fe and Zn for different types of SNe
- Short Name:
- J/ApJ/855/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The heaviest iron-peak element Zinc (Zn) has been used as an important tracer of cosmic chemical evolution. Spectroscopic observations of the metal-poor stars in Local Group galaxies show an increasing trend of [Zn/Fe] ratios toward lower metallicity. However, the enrichment of Zn in galaxies is not well understood due to poor knowledge of astrophysical sites of Zn, as well as metal mixing in galaxies. Here we show possible explanations for the observed trend by taking into account electron-capture supernovae (ECSNe) as one of the sources of Zn in our chemodynamical simulations of dwarf galaxies. We find that the ejecta from ECSNe contribute to stars with [Zn/Fe]>~0.5. We also find that scatters of [Zn/Fe] in higher metallicities originate from the ejecta of type Ia supernovae. On the other hand, it appears difficult to explain the observed trends if we do not consider ECSNe as a source of Zn. These results come from an inhomogeneous spatial metallicity distribution due to the inefficiency of the metal mixing. We find that the optimal value of the scaling factor for the metal diffusion coefficient is ~0.01 in the shear- based metal mixing model in smoothed particle hydrodynamics simulations. These results suggest that ECSNe could be one of the contributors of the enrichment of Zn in galaxies.
- ID:
- ivo://CDS.VizieR/J/A+AS/123/305
- Title:
- Yields of intermediate mass stars
- Short Name:
- J/A+AS/123/305
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present theoretical yields of H, ^4^He, ^12^C, ^13^C, ^14^N, and ^16^O for stars with initial masses between 0.8 and 8M_{sun}_ and initial metallicities Z=0.001, 0.004, 0.008, 0.02, and 0.04. We use the evolutionary tracks of the Geneva group up to the early asymptotic giant branch (AGB) in combination with a synthetic thermal-pulsing AGB evolution model to follow in detail the chemical evolution and mass loss up to the end of the AGB including the first, second, and third dredge-up phases. Most of the relations used are metallicity dependent to make a realistic comparison with stars of different initial abundances. The effect of Hot Bottom Burning (HBB) is included in an approximate way. The metallicity dependent yields of intermediate mass stars listed in tables (1-38) below are well suited for use in galactic chemical evolution models.
- ID:
- ivo://CDS.VizieR/J/A+A/432/861
- Title:
- Yields of low and intermediate mass stars
- Short Name:
- J/A+A/432/861
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a set of low and intermediate mass star yields based on a modeling of the TP-AGB phase which affects the production of nitrogen and carbon. These yields are evaluated by using them in a Galaxy Chemical Evolution model, with which we analyze the evolution of carbon abundances. By comparing the results with those obtained with other yield sets, and with a large amount of observational data, we conclude that the model using these yields combined with those from Woosley & Weaver (1995ApJS..101..181W) for massive stars properly reproduce all the data. The model reproduces well the increase of C/O with increasing O/H abundances. Since these massive star yields do not include winds, it implies that these stellar winds might have a smoother dependence on metallicity than usually assumed and that a significant quantity of carbon proceeds from LIM stars.
21937. YJK for Type Ia supernovae
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/1345
- Title:
- YJK for Type Ia supernovae
- Short Name:
- J/MNRAS/448/1345
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ~15 to 30d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.
- ID:
- ivo://CDS.VizieR/J/MNRAS/472/808
- Title:
- YJKs light curves of SMC Classical Cepheids
- Short Name:
- J/MNRAS/472/808
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The VISTA near-infrared YJKs survey of the Magellanic System (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting bridge. Here, we present Y, J, Ks light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 deg^2^. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that (i) the age distribution is bimodal, with two peaks at 120+/-10 and 220+/-10Myr; (i) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC is not planar but heavily elongated for more than 25-30kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high-precision three-dimensional distribution of young stars presented in this paper provides a new test bed for future models exploring the formation and evolution of the Magellanic System.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/60
- Title:
- YMGs. I. Young binaries & lithium-rich stars
- Short Name:
- J/ApJ/877/60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young stars in the solar neighborhood serve as nearby probes of stellar evolution and represent promising targets to directly image self-luminous giant planets. We have carried out an all-sky search for late-type (~K7-M5) stars within 100pc selected primarily on the basis of activity indicators from the Galaxy Evolution Explorer and ROSAT. Approximately 2000 active and potentially young stars are identified, of which we have followed up over 600 with low-resolution optical spectroscopy and over 1000 with diffraction-limited imaging using Robo-AO at the Palomar 1.5m telescope. Strong lithium is present in 58 stars, implying ages spanning ~10-200Myr. Most of these lithium-rich stars are new or previously known members of young moving groups including TWA, {beta}Pic, Tuc-Hor, Carina, Columba, Argus, ABDor, Upper Centaurus Lupus, and Lower Centaurus Crux; the rest appear to be young low-mass stars without connections to established kinematic groups. Over 200 close binaries are identified down to 0.2"-the vast majority of which are new-and will be valuable for dynamical mass measurements of young stars with continued orbit monitoring in the future.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A6
- Title:
- 12Y-MST and 12Y-MSTw Catalogues
- Short Name:
- J/A+A/652/A6
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present an updated version catalogue of gamma-ray source candidates, 12Y-MST, selected using the Minimum Spanning Tree (MST) algorithm on the 12-years Fermi/LAT sky (Pass 8) at energies higher than 10GeV. The high energy sky at absolute Galactic latitudes above 20 degrees has been investigated using rather restrictive selection criteria, resulting in a total sample of 1664 photon clusters, or candidate sources. Of these, 230 are new detections, i.e., candidate sources without any association in other gamma-ray catalogues. A large fraction of them have interesting counterparts, most likely blazars. In this paper the main results on the catalogue selection and search of counterparts are described. We also present an additional sample of 224 candidate sources (12Y-MSTw), which are clusters extracted applying weaker selection criteria: about 57% of them have not been reported in other catalogues.