- ID:
- ivo://CDS.VizieR/J/A+A/614/A48
- Title:
- Continuous rise of bulges out of galactic disks
- Short Name:
- J/A+A/614/A48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A key subject in extragalactic astronomy concerns the chronology and driving mechanisms of bulge formation in late-type galaxies (LTGs). The standard scenario distinguishes between classical bulges and pseudo-bulges (CBs and PBs, respectively), the first thought to form monolithically prior to disks and the second gradually out of disks. These two bulge formation routes obviously yield antipodal predictions on the bulge age and bulge-to-disk age contrast, both expected to be high (low) in CBs (PBs). Our main goal is to explore whether bulges in present-day LTGs segregate into two evolutionary distinct classes, as expected from the standard scenario. Other questions motivating this study center on evolutionary relations between LTG bulges and their hosting disks, and the occurrence of accretion-powered nuclear activity as a function of bulge stellar mass M* and stellar surface density {Sigma}*. In this study we have combined three techniques - surface photometry, spectral modeling of integral field spectroscopy data and suppression of stellar populations younger than an adjustable age cutoff with the code REMOVE YOUNG (RY) - toward a systematic analysis of the physical and evolutionary properties (e.g., M* , {Sigma}* and mass-weighted stellar age <t*>_M_ and metallicity <Z*>_M_, respectively) of a representative sample of 135 nearby (<=130Mpc) LTGs from the CALIFA survey that cover a range between 10^8.9^M_{sun}_ and 10^11.5^M_{sun}_ in total stellar mass M_*,T_. In particular, the analysis here revolves around <{delta}{mu}9G>, a new distance- and formally extinction-independent measure of the contribution by stellar populations of age >=9Gyr to the mean r-band surface brightness of the bulge. We argue that <{delta}{mu}9Gx > offers a handy semi-empirical tracer of the physical and evolutionary properties of LTG bulges and a promising means for their characterization.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/VII/64
- Title:
- CO Observations of Galaxies
- Short Name:
- VII/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalog is a complete summary of all observations of CO isotopes in galaxies up to spring 1984. It consists of seven tables. Refs.dat describes the reference for CO observations of galaxies. Telescop.dat describes the properties of the telescopes used for observations. Detect.dat and uprlmits.dat contain a compilation of data on galaxies that have been observed in CO. Most of the characteristics listed here are observed properties. The detected galaxies are listed first, followed by galaxies with upper limits. Upper limits are given for detected galaxies if the detection is disputed or if the limits refer to transitions or regions that have not yet been detected. Temp.dat is a comparison of the antenna temperature scales used in the references in this catalog. Maps.dat lists the coverage, resolution, observed structure of CO maps of galaxies, and notes.dat contains notes to tables.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A108
- Title:
- Cool stars chromospheric activity catalog
- Short Name:
- J/A+A/616/A108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chromospheric activity monitoring of a wide range of cool stars can provide valuable information on stellar magnetic activity and its dependence on fundamental stellar parameters such as effective temperature and rotation. We compile a chromospheric activity catalogue of 4454 cool stars from a combination of archival HARPS spectra and multiple other surveys, including the Mount Wilson data that have recently been released by the NSO. We explore the variation in chromospheric activity of cool stars along the main sequence for stars with different effective temperatures. Additionally, we also perform an activity-cycle period search and investigate its relation with rotation. The chromospheric activity index, S-index, was measured for 304 main-sequence stars from archived high-resolution HARPS spectra. Additionally, the measured and archived S-indices were converted into the chromospheric flux ratio logR'HK. The activity-cycle periods were determined using the generalised Lomb-Scargle periodogram to study the active and inactive branches on the rotation-activity-cycle period plane. The global sample shows that the bimodality of chromospheric activity, known as the Vaughan-Preston gap, is not prominent, with a significant percentage of the stars at an intermediate-activity level around logR'HK=-4.75. Independently, the cycle period search shows that stars can lie in the region intermediate between the active and inactive branch, which means that the active branch is not as clearly distinct as previously thought. The weakening of the Vaughan-Preston gap indicates that cool stars spin down from a higher activity level and settle at a lower activity level without a sudden break at intermediate activity. Some cycle periods are close to the solar value between the active and inactive branch, which suggests that the solar dynamo is most likely a common case of the stellar dynamo.
- ID:
- ivo://CDS.VizieR/J/ApJS/182/559
- Title:
- Corotation radii for 153 galaxies of OSUBSGS
- Short Name:
- J/ApJS/182/559
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The potential-density phase-shift method (Zhang et al., 2007AJ....133.2584Z) is an effective new tool for investigating the structure and evolution of galaxies. In this paper, we apply the method to 153 galaxies in the Ohio State University Bright Galaxy Survey (OSUBGS) to study the general relationship between pattern corotation radii and the morphology of spiral galaxies. The analysis is based on near-infrared H-band images that have been deprojected and decomposed assuming a spherical bulge.
- ID:
- ivo://CDS.VizieR/J/AJ/152/50
- Title:
- Cosmicflows-3 catalog (CF3)
- Short Name:
- J/AJ/152/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Cosmicflows database of galaxy distances that in the second edition contained 8188 entries is now expanded to 17669 entries. The major additions are 2257 distances that we have derived from the correlation between galaxy rotation and luminosity with photometry at 3.6{mu}m obtained with the Spitzer Space Telescope and 8885 distances based on the Fundamental Plane methodology from the Six Degree Field Galaxy Survey collaboration. There are minor augmentations to the Tip of the Red Giant Branch and Type Ia supernova compilations. A zero-point calibration of the supernova luminosities gives a value for the Hubble Constant of 76.2+/-3.4+/-2.7 (+/-rand.+/-sys.)km/s/Mpc. Alternatively, a restriction on the peculiar velocity monopole term representing global infall/outflow implies H_0_=75+/-2km/s/Mpc.
- ID:
- ivo://CDS.VizieR/J/AJ/146/86
- Title:
- Cosmicflows-2 catalog (CF2)
- Short Name:
- J/AJ/146/86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cosmicflows-2 is a compilation of distances and peculiar velocities for over 8000 galaxies. Numerically the largest contributions come from the luminosity-line width correlation for spirals, the Tully-Fisher relation (TFR), and the related fundamental plane relation for E/S0 systems, but over 1000 distances are contributed by methods that provide more accurate individual distances: Cepheid, tip of the red giant branch (TRGB), surface brightness fluctuation, Type Ia supernova, and several miscellaneous but accurate procedures. Our collaboration is making important contributions to two of these inputs: TRGB and TFR. A large body of new distance material is presented. In addition, an effort is made to ensure that all the contributions, both our own and those from the literature, are on the same scale. Overall, the distances are found to be compatible with a Hubble constant H_0_=74.4+/-3.0km/s/Mpc. The great interest going forward with this data set will be with velocity field studies. Cosmicflows-2 is characterized by a great density and high accuracy of distance measures locally, falling to sparse and coarse sampling extending to z=0.1.
- ID:
- ivo://CDS.VizieR/J/MNRAS/438/3465
- Title:
- Cosmic web filaments in the SDSS
- Short Name:
- J/MNRAS/438/3465
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large scale structure, on the other hand, is an important property of the galaxy distribution. Here we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (SDSS). We search for filaments in the galaxy distribution that have a radius of about 0.5Mpc/h. We divide the detected network into single filaments and present a public catalogue of filaments. We study the filament length distribution and show that the longest filaments reach the length of 60Mpc/h. The filaments contain 35-40% of the total galaxy luminosity and they cover roughly 5-8% of the total volume, in good agreement with N-body simulations and previous observational results.
- ID:
- ivo://CDS.VizieR/J/ApJ/837/16
- Title:
- Cosmic web of galaxies in the COSMOS field
- Short Name:
- J/ApJ/837/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use a mass complete (log(M/M_{sun}_)>=9.6) sample of galaxies with accurate photometric redshifts in the COSMOS field to construct the density field and the cosmic web to z=1.2. The comic web extraction relies on the density field Hessian matrix and breaks the density field into clusters, filaments, and the field. We provide the density field and cosmic web measures to the community. We show that at z<~0.8, the median star formation rate (SFR) in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellites (~1dex versus ~0.5dex for centrals). However, at z>~0.8, the trend flattens out for the overall galaxy population and satellites. For star-forming (SF) galaxies only, the median SFR is constant at z>~0.5 but declines by ~0.3-0.4dex from the field to clusters for satellites and centrals at z<~0.5. We argue that for satellites, the main role of the cosmic web environment is to control their SF fraction, whereas for centrals, it is mainly to control their overall SFR at z<~0.5 and to set their fraction at z>~0.5. We suggest that most satellites experience a rapid quenching mechanism as they fall from the field into clusters through filaments, whereas centrals mostly undergo a slow environmental quenching at z<~0.5 and a fast mechanism at higher redshifts. Our preliminary results highlight the importance of the large-scale cosmic web on galaxy evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A137
- Title:
- Cosmology from galaxy lensing and clustering
- Short Name:
- J/A+A/627/A137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The combination of Galaxy-Galaxy Lensing (GGL) and Redshift Space Distortion of galaxy clustering (RSD) is a privileged technique to test General Relativity predictions, and break degeneracies between the growth rate of structure parameter f and the amplitude of the linear power-spectrum {sigma}8. We perform a joint GGL and RSD analysis on 250 sq. degrees using shape catalogues from CFHTLenS and CFHT-Stripe 82, and spectroscopic redshifts from the BOSS CMASS sample. We adjust a model that includes non-linear biasing, RSD and Alcock-Paczynski effects. We find f(z=0.57)=0.95+/-0.23, {sigma}8(z=0.57)=0.55+/-0.07 and {OMEGA}m=0.31+/-0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity E_G_=0.43+/-0.10 in agreement with {LAMBDA}CDM-GR predictions of E_G_=0.40. This analysis reveals that RSD efficiently decreases the GGL uncertainty on {OMEGA}m by a factor of 4, and by 30% on {sigma}8. We use an N-body simulation supplemented by an abundance matching prescription for CMASS to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this helps us to quantify and correct several systematic errors, such as photometric redshifts. We make our mock catalogues available on the Skies and Universe database.
- ID:
- ivo://CDS.VizieR/J/MNRAS/507/5034
- Title:
- COSMOS2015 dataset machine learning photo-z
- Short Name:
- J/MNRAS/507/5034
- Date:
- 03 Dec 2021 13:07:03
- Publisher:
- CDS
- Description:
- In order to answer the open questions of modern cosmology and galaxy evolution theory, robust algorithms for calculating photometric redshifts (photo-z) for very large samples of galaxies are needed. Correct estimation of the various photo-z algorithms' performance requires attention to both the performance metrics and the data used for the estimation. In this work, we use the supervised machine learning algorithm MLPQNA (Multi-Layer Perceptron with Quasi-Newton Algorithm) to calculate photometric redshifts for the galaxies in the COSMOS2015 catalogue and the unsupervised Self-Organizing Maps (SOM) to determine the reliability of the resulting estimates. We find that for z_spec_<1.2, MLPQNA photo-z predictions are on the same level of quality as spectral energy distribution fitting photo-z. We show that the SOM successfully detects unreliable zspec that cause biases in the estimation of the photo-z algorithms' performance. Additionally, we use SOM to select the objects with reliable photo-z predictions. Our cleaning procedures allow us to extract the subset of objects for which the quality of the final photo-z catalogues is improved by a factor of 2, compared to the overall statistics.