- ID:
- ivo://CDS.VizieR/J/A+A/484/721
- Title:
- HES survey. IV. Candidate metal-poor stars
- Short Name:
- J/A+A/484/721
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the CaII K line, B-V colors (both measured directly from the digital HES spectra), as well as J-K colors from the 2 Micron All Sky Survey. The KP index for CaII K can be measured from the HES spectra with an accuracy of 1.0{AA}, and a calibration of the HES B-V colors, using CCD photometry, yields a 1-sigma uncertainty of 0.07mag for stars in the color range 0.3<B-V<1.4.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/156/179
- Title:
- Highly r-process-enhanced field stars kinematics
- Short Name:
- J/AJ/156/179
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the kinematics of 35 highly r-process-enhanced ([Eu/Fe]>=+0.7) metal-poor (-3.8<[Fe/H]< -1.4) field stars. We calculate six-dimensional positions and velocities, evaluate energies and integrals of motion, and compute orbits for each of these stars using parallaxes and proper motions from the second Gaia data release (Cat. I/345) and published radial velocities. All of these stars have halo kinematics. Most stars (66%) remain in the inner regions of the halo (<13 kpc), and many (51%) have orbits that pass within 2.6 kpc of the Galactic center. Several stars (20%) have orbits that extend beyond 20 kpc, including one with an orbital apocenter larger than the Milky Way virial radius. We apply three clustering methods to search for structure in phase space, and we identify eight groups. No abundances are considered in the clustering process, but the [Fe/H] dispersions of the groups are smaller than would be expected by random chance. The orbital properties, clustering in phase space and metallicity, and the lack of highly r-process-enhanced stars on disk-like orbits, indicate that such stars likely were accreted from disrupted satellites. Comparison with the galaxy luminosity-metallicity relation suggests M_V_>~-9 for most of the progenitor satellites, characteristic of ultra-faint or low-luminosity classical dwarf spheroidal galaxies. Environments with low rates of star formation and Fe production, rather than the nature of the r-process site, may be key to obtaining the [Eu/Fe] ratios found in highly r-process-enhanced stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/898/150
- Title:
- High-res. MIKE obs. of metal-poor stars
- Short Name:
- J/ApJ/898/150
- Date:
- 21 Mar 2022 08:50:22
- Publisher:
- CDS
- Description:
- Extensive progress has recently been made in our understanding of heavy-element production via the r-process in the universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational-wave signal detected by LIGO, GW170817. The chemical abundance patterns of metal-poor r-process-enhanced stars provide key evidence for the dominant site(s) of the r-process and whether NSBMs are sufficiently frequent or prolific r-process sources to be responsible for the majority of r-process material in the universe. We present atmospheric stellar parameters (using a nonlocal thermodynamic equilibrium analysis) and abundances from a detailed analysis of 141 metal-poor stars carried out as part of the R-Process Alliance (RPA) effort. We obtained high-resolution "snapshot" spectroscopy of the stars using the MIKE spectrograph on the 6.5m Magellan Clay telescope at Las Campanas Observatory in Chile. We find 10 new highly enhanced r-II (with [Eu/Fe]>+1.0), 62 new moderately enhanced r-I (+0.3<[Eu/Fe]<~+1.0), and 17 new limited-r ([Eu/Fe]<+0.3) stars. Among those, we find 17 new carbon-enhanced metal-poor (CEMP) stars, of which five are CEMP-no. We also identify one new s-process-enhanced ([Ba/Eu]>+0.5) and five new r/s (0.0<[Ba/Eu]<+0.5) stars. In the process, we discover a new ultra-metal-poor (UMP) star at [Fe/H]=-4.02. One of the r-II stars shows a deficit in {alpha} and Fe-peak elements, typical of dwarf galaxy stars. Our search for r-process-enhanced stars by RPA efforts has already roughly doubled the known r-process sample.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/152
- Title:
- HST FGS-1r parallaxes for 8 metal-poor stars
- Short Name:
- J/ApJ/835/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H]< -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144{mu}as. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7<[Fe/H]< -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O'Malley+ (2017ApJ...838...90O), we find that standard stellar models using the VandenBerg & Clem (2003AJ....126..778V) color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H]=-2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4{<=}[Fe/H]{<=}-1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7+/-1.0Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/812/109
- Title:
- HST & Keck spectroscopy of bright CEMP-s stars
- Short Name:
- J/ApJ/812/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD 196944 (V=8.40, [Fe/H]=-2.41) and HD 201626 (V=8.16, [Fe/H]=-1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD 196944 has been well-studied in the optical region, but we add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD 201626 has only a limited number of abundance results based on previous optical work --here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, with the goal of explaining their origin and evolution. Our best-fitting models for HD 196944 (M_1,i_=0.9M_{sun}_, M_2,i_=0.86M_{sun}_, for [Fe/H]=-2.2), and HD 201626 (M_1,i_=0.9M_{sun}_, M_2,i_=0.76M_{sun}_ for [Fe/H]=-2.2; M_1,i_=1.6M_{sun}_, M_2,i_=0.59M_{sun}_ for [Fe/H]=-1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars.
- ID:
- ivo://CDS.VizieR/IV/20
- Title:
- Identifications of Metal-Deficient F-M Stars
- Short Name:
- IV/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalog provides identifications in a variety of astronomical catalogs of 1555 metal-deficient stars from the MDSP catalog of metal-deficient F-M stars classified spectroscopically (Bartkevicius 1980) and from its first supplement, MDSPS1 (Bartkevicius 1984, Cat. <III/125>).
- ID:
- ivo://CDS.VizieR/J/A+A/402/343
- Title:
- IR O I triplet, [O I] lines in F-K dwarfs/giants
- Short Name:
- J/A+A/402/343
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to investigate the formation of O I 7771-5 and [O I] 6300/6363 lines, extensive non-LTE calculations for neutral atomic oxygen were carried out for wide ranges of model atmosphere parameters, which are applicable to early-K through late-F halo/disk stars of various evolutionary stages. The formation of the triplet O I lines was found to be well described by the classical two-level-atom scattering model, and the non-LTE correction is practically determined by the parameters of the line-transition itself without any significant relevance to the details of the oxygen atomic model. This simplifies the problem in the sense that the non-LTE abundance correction is essentially determined only by the line-strength (W_{lambda}_), if the atmospheric parameters of Teff, logg, and {xi} are given, without any explicit dependence of the metallicity; thus allowing a useful analytical formula with tabulated numerical coefficients. On the other hand, our calculations lead to the robust conclusion that LTE is totally valid for the forbidden [O I] lines.
- ID:
- ivo://CDS.VizieR/J/ApJ/890/119
- Title:
- Iron element abundances in 3 very metal-poor stars
- Short Name:
- J/ApJ/890/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H]~-3) stars: BD+03 740, BD-13 3442, and CD-33 1173. High-resolution ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra in the wavelength range 2300-3050{AA} were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for a number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<=-2. The abundances of these elements in BD+03 740, BD-13 3442, CD-33 1173, and HD 84937 (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [CrI/Fe]=+0.01) and ionized species (mean of [CrII/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [CoI/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [CoII/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
- ID:
- ivo://CDS.VizieR/J/ApJ/566/880
- Title:
- ISO-SWS observations of H II regions
- Short Name:
- J/ApJ/566/880
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present mid-infrared Infrared Space Observatory Short-Wavelength Spectrometer (ISO-SWS) observations of the fine-structure emissions lines [Ne II] 12.8{mu}m, [Ne III] 15.6{mu}m, [Ne III] 36.0{mu}m, [Ar II] 6.99{mu}m, [Ar III] 8.99{mu}m, [S III] 18.7{mu}m, [S III] 33.5{mu}m, and [S IV] 10.5{mu}m and the recombination lines Br{alpha} and Br{beta} n a sample of 112 Galactic H II regions and 37 nearby extra-Galactic H II regions in the LMC, SMC, and M33.
140. Jurassic structure
- ID:
- ivo://CDS.VizieR/J/A+A/644/A83
- Title:
- Jurassic structure
- Short Name:
- J/A+A/644/A83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detailed elemental-abundance patterns of giant stars in the Galactic halo measured by the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have revealed the existence of a unique and significant stellar subpopulation of silicon-enhanced ([Si/Fe]>+0.5) metal-poor stars, spanning a wide range of metallicities (-1.5<[Fe/H]<-0.8). Stars with over-abundances in [Si/Fe] are of great interest because these have very strong silicon (^28^Si) spectral features for stars of their metallicity and evolutionary stage, offering clues about rare nucleosynthetic pathways in globular clusters (GCs). Si-rich field stars have been conjectured to have been evaporated from GCs, however, the origin of their abundances remains unclear, and several scenarios have been offered to explain the anomalous abundance ratios. These include the hypothesis that some of them were born from a cloud of gas previously polluted by a progenitor that underwent a specific and peculiar nucleosynthesis event or, alternatively, that they were due to mass transfer from a previous evolved companion. However, those scenarios do not simultaneously explain the wide gamut of chemical species that are found in Si-rich stars. Instead, we show that the present inventory of such unusual stars, as well as their relation to known halo substructures (including the in situ halo, Gaia-Enceladus, the Helmi Stream(s), and Sequoia, among others), is still incomplete. We report the chemical abundances of the iron-peak (Fe), the light- (C and N), the alpha- (O and Mg), the odd-Z (Na and Al), and the s-process (Ce and Nd) elements of 55 newly identified Si-rich field stars (among more than ~600000 APOGEE-2 targets), which exhibit over-abundances of [Si/Fe] as extreme as those observed in some Galactic GCs, and they are relatively well distinguished from other stars in the [Si/Fe]-[Fe/H] plane. This new census confirms the presence of a statistically significant and chemically-anomalous structure in the inner halo: Jurassic. The chemo-dynamical properties of the Jurassic structure is consistent with it being the tidally disrupted remains of GCs, which are easily distinguished by an over-abundance of [Si/Fe] among Milky Way (MW) populations or satellites.