- ID:
- ivo://CDS.VizieR/J/AJ/157/149
- Title:
- Transit parameters for planets around subgiants
- Short Name:
- J/AJ/157/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of seven new planets and eight planet candidates around subgiant stars, as additions to the known sample of planets around "retired A stars". Among these are the possible first three-planet systems around subgiant stars, HD 163607 and HD 4917. Additionally, we present calculations of possible transit times, durations, depths, and probabilities for all known planets around subgiant (3<logg<4) stars, focused on possible transits during the TESS mission. While most have transit probabilities of 1%-2%, we find that there are three planets with transit probabilities >9%.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/646/A183
- Title:
- Transit photometry of NGTS-14Ab
- Short Name:
- J/A+A/646/A183
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The sub-Jovian or Neptunian desert is a previously-identified region of parameter space where there is a relative dearth of intermediate- mass planets at short orbital periods. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14A. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full- frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters. NGTS-14Ab has a radius about 30 per cent larger than that of Neptune (0.444+/-0.030R_Jup_), and is around 70 per cent more massive than Neptune (0.092+/-0.012 M_Jup_). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A117
- Title:
- Transit search in the V1400 Cen system
- Short Name:
- J/A+A/652/A117
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- In 2007, the young star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a complex series of deep eclipses over 56 days. This was attributed to the transit of a ring system filling a large fraction of the Hill sphere of an unseen substellar companion. Subsequent photometric monitoring has not found any other deep transits from this candidate ring system, but if there are more substellar companions and if they are coplanar with the potential ring system, there is a chance that they will transit the star as well. This young star is active, and the light curves show a 5% modulation in amplitude with a dominant rotation period of 3.2 days due to starspots rotating into and out of view. We model and remove the rotational modulation of the J1407 light curve and search for additional transit signatures of substellar companions orbiting around J1407. We combine the photometry of J1407 from several observatories, spanning a 19 year baseline. We remove the rotational modulation by modeling the variability as a periodic signal, whose periodicity changes slowly with time over several years due to the activity cycle of the star. A transit least squares (TLS) analysis is used to search for any periodic transiting signals within the cleaned light curve. We identify an activity cycle of J1407 with a period of 5.4yr. A TLS search does not find any plausible periodic eclipses in the light curve, from 1.2% amplitude at 5 days up to 1.9% at 20 days. This sensitivity is confirmed by injecting artificial transits into the light curve and determining the recovery fraction as a function of transit depth and orbital period. J1407 is confirmed as a young active star with an activity cycle consistent with a rapidly rotating solar mass star. With the rotational modulation removed, the TLS analysis reaches down to planetary mass radii for young exoplanets, ruling out transiting companions with radii larger than about 1R_Jup_.
- ID:
- ivo://CDS.VizieR/J/ApJ/888/L5
- Title:
- Transits, occultation times and RVs of WASP-12b
- Short Name:
- J/ApJ/888/L5
- Date:
- 25 Oct 2021 10:19:53
- Publisher:
- CDS
- Description:
- WASP-12b is a transiting hot Jupiter on a 1.09 day orbit around a late-F star. Since the planet's discovery in 2008, the time interval between transits has been decreasing by 29+/-2ms/yr. This is a possible sign of orbital decay, although the previously available data left open the possibility that the planet's orbit is slightly eccentric and is undergoing apsidal precession. Here, we present new transit and occultation observations that provide more decisive evidence for orbital decay, which is favored over apsidal precession by a {Delta}BIC of 22.3 or Bayes factor of 70000. We also present new radial-velocity data that rule out the Romer effect as the cause of the period change. This makes WASP-12 the first planetary system for which we can be confident that the orbit is decaying. The decay timescale for the orbit is P/{dot}P=3.25+/-0.23Myr. Interpreting the decay as the result of tidal dissipation, the modified stellar tidal quality factor is Q_*_^'^=1.8x10^5^.
- ID:
- ivo://CDS.VizieR/J/AJ/162/167
- Title:
- Transits time of M-dwarf TOI-1749
- Short Name:
- J/AJ/162/167
- Date:
- 16 Mar 2022 11:43:00
- Publisher:
- CDS
- Description:
- We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05days, and radii of 1.4, 2.1, and 2.5R{Earth}, respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15M{Earth} for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass-loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.
- ID:
- ivo://CDS.VizieR/J/AJ/159/120
- Title:
- Transit time of K2-146b and K2-146c with K2 and HPF
- Short Name:
- J/AJ/159/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- K2-146 is a cool, 0.358M_{sun}_ dwarf that was found to host a mini-Neptune with a 2.67day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146c, using additional photometric data. K2-146c was found to have a grazing transit geometry and a 3.97day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146b and c were measured using observations spanning a baseline of almost 1200days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146b has a radius of 2.25{+/-}0.10R_{earth}_ and a mass of 5.6{+/-}0.7M_{earth}_, whereas K2-146c has a radius of 2.59_-0.39_^+1.81^R_{earth} and a mass of 7.1{+/-}0.9M_{earth}_. The inner and outer planets likely have moderate eccentricities of e=0.14{+/-}0.07 and 0.16{+/-}0.07, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
- ID:
- ivo://CDS.VizieR/J/AJ/157/217
- Title:
- Transit times of five hot Jupiter WASP exoplanets
- Short Name:
- J/AJ/157/217
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6+/-11.7 s earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6 s offset at the 6.4{sigma} level. The 1.3 day orbital period of WASP-4b appears to be decreasing at a rate of P=-12.6+/-1.2 ms per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.
- ID:
- ivo://CDS.VizieR/J/AJ/159/150
- Title:
- Transit times of 11 hot Jupiters
- Short Name:
- J/AJ/159/150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many of the known hot Jupiters are formally unstable to tidal orbital decay. The only hot Jupiter for which orbital decay has been directly detected is WASP-12, for which transit-timing measurements spanning more than a decade have revealed that the orbital period is decreasing at a rate of dP/dt~10^-9^, corresponding to a reduced tidal quality factor of about 2x10^5^. Here, we present a compilation of transit-timing data for WASP-12 and 11 other systems that are especially favorable for detecting orbital decay: KELT-16; WASP-18, 19, 43, 72, 103, 114, and 122; HAT-P-23; HATS-18; and OGLE-TR-56. For most of these systems we present new data that extend the time baseline over which observations have been performed. None of the systems besides WASP-12 display convincing evidence for period changes, with typical upper limits on dP/dt on the order of 10^-9^ or 10^-10^, and lower limits on the reduced tidal quality factor on the order of 10^5^. One possible exception is WASP-19, which shows a statistically significant trend, although it may be a spurious effect of starspot activity.
- ID:
- ivo://CDS.VizieR/J/AJ/162/210
- Title:
- Transit Time Vartiations (TTVs) of WASP-43
- Short Name:
- J/AJ/162/210
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- WASP-43b is one of the most important candidates for detecting an orbital decay. We investigate pieces of evidence for this expectation as variations in its transit timings, based on the ground and space observations. The data set includes the transit observations at the TUBITAK National Observatory of Turkey and Transiting Exoplanet Survey Satellite (TESS). We present a global model of the system, based on the most precise photometry from space, ground, and archival radial velocity data. Using the homogenized data set and modeled light curves, we measure the mid-transit times for WASP-43b. Our analysis agrees with a linear ephemeris for which we refine the light elements for future observations of the system. However, there is a negative difference between the transit timings derived from TESS data in two sectors (9 and 35) and a hint of an orbital period decrease in the entire data set. Both findings are statistically insignificant due to the short baseline of observations, which prevents us from drawing firm conclusions about the orbital decay of this ultra-short-period planet. However, assuming the effect of this decrease of the period in the planet's orbit, we derive a lower limit for the reduced tidal quality factor as Q*'>(4.01{+/-}1.15)x10^5^ from the best-fitting quadratic function. Finally, we calculate a probable rotational period for this system as 7.52days from the out-of-transit flux variation in the TESS light curves due to spot modulation.
- ID:
- ivo://CDS.VizieR/J/AJ/158/133
- Title:
- Transit timing and light curves for K2-146
- Short Name:
- J/AJ/158/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- K2-146 is a mid-M dwarf (M_*_=0.331+/-0.009 M_{sun}_; R_*_=0.330+/-0.010 R_{sun}_), observed in Campaigns 5, 16, and 18 of the K2 mission. In Campaign 5 data, a single planet was discovered with an orbital period of 2.6 days and large transit timing variations due to an unknown perturber. Here, we analyze data from Campaigns 16 and 18, detecting the transits of a second planet, c, with an orbital period of 4.0 days, librating in a 3:2 resonance with planet b. Large, anticorrelated timing variations of both planets exist due to their resonant perturbations. The planets have a mutual inclination of 2.40{deg}+/-0.25{deg}, which torqued planet c more closely into our line of sight. Planet c was grazing in Campaign 5 and thus missed in previous searches; it is fully transiting in Campaigns 16 and 18, and its transit depth is three times larger. We improve the stellar properties using data from Gaia DR2 (Cat. I/345), and use dynamical fits to find that both planets are sub-Neptunes: their masses are 5.77+/-0.18 and 7.50+/-0.23 M_{Earth}_, and their radii are 2.04+/-0.06 and 2.19+/-0.07 R_{Earth}_, respectively. These mass constraints set the precision record for small exoplanets (a few gas giants have comparable relative precision). These planets lie in the photoevaporation valley when viewed in Radius-Period space, but due to the low-luminosity M-dwarf host star, they lie among the atmosphere-bearing planets when viewed in Radius-Irradiation space. This, along with their densities being 60-80% that of Earth, suggests that they may both have retained a substantial gaseous envelope.